Math 112

Final Exam

June 2007
Ali Nesin
Let R be a commutative ring with 1 . A subset I of R is called an ideal of R if $I \neq \varnothing, I-I \subseteq$ I and $R I \subseteq I$. In this case we write $I \triangleleft R$.

1. Show that a subset I of R is an ideal if and only if $0 \in R, I+I \subseteq I$ and $R I \subseteq I$. (4 pts.)
2. Given $x \in R$, show that $R x \triangleleft R$. (2 pts.)
3. Given $x, y \in R$, show that $R x+R y \triangleleft R$. (2 pts.)
4. Let R be a ring and $\Pi_{\mathbb{N}} R$ be the set of sequences whose terms are in R. Then $\Pi_{\mathbb{N}} R$ is a ring with the usual operations of addition and multiplication of sequences. Let $\oplus_{\mathbb{N}} R$ be the set of sequences with only finitely many non-zero terms. Show that $\oplus_{\mathbb{N}} R \triangleleft \Pi_{\mathbb{N}}$ R. (3 pts.)
5. Show that any ring has at least two ideals. (2 pts .)
6. Let R and S be two rings. Then $R \times S$ is also a ring. Show that an ideal of $R \times S$ is of the form $I \times J$ for some ideals $I \triangleleft R$ and $J \triangleleft S$. (6 pts.)
7. Show that an ideal that contains an invertible element must be equal to R. (4 pts.)
8. Show that a ring has only two ideals if and only if it is a field. (5 pts .)
9. Show that the intersection of any set of ideals is an ideal. (4 pts.)
10. Given any subset X of R show that there is a smallest ideal containing X and show that this ideal is $\left\{r_{1} x_{1}+\ldots+r_{n} x_{n}: n \in \mathbb{N}, r_{i} \in R, x_{i} \in X\right\}$. This is called the ideal generated by X and is denoted by $\langle X\rangle$. (6 pts.)
11. Let I and J be two ideals of R. Show that $I \cup J$ is an ideal if and only if one of I and J is a subset of the other. (4 pts .)
12. Let $I, J \triangleleft R$. Show that $I+J \triangleleft R$ and it is the smallest ideal containing I and J. (3 pts.)
13. Let $e \in R$ be such that $e^{2}=e$. Let $f=1-e$. Show that $f^{2}=f$. (2 pts.) Show that $R e \cap R f$ $=\{0\}$ and that $R=R e+R f$. (5 pts.) Show that $R e$ is a ring with an identity (but usually it is not a subring of $R ; 5$ pts.) Show that the map i from $R e \times R f$ into R defined by

$$
i(x, y)=x+y
$$

is a bijection that respects addition and multiplication. (5 pts .)
14. Let $I, J \triangleleft R$. Show that the set

$$
I J=\left\{x_{1} y_{1}+\ldots+x_{n} y_{n}: n \in \mathbb{N}, x_{i} \in I, y_{i} \in J\right\}
$$

is an ideal contained in $I \cap J$. (3 pts.)
15. Let $I, J, K \triangleleft R$. Show that $I(J K)$ and ($I J) K$. (3 pts.)
16. Let $I, J, K \triangleleft R$. What is the relationship between $I(J+K)$ and $I J+I K$? (4 pts.)
17. Find all ideals of the ring \mathbb{Z}. (5 pts .)
18. For $I \triangleleft R$, let $\sqrt{ } I=\left\{r \in R: r^{n} \in I\right.$ for some $\left.n \in \mathbb{N}\right\}$. a) Show that $\sqrt{ } I$ is an ideal of R containing I. (5 pts .) b) Show that $\sqrt{ } \sqrt{ } I=\sqrt{ } I$. (3 pts .) c) What is the relationship between $\sqrt{ }(I J)$ and $\sqrt{ } I J$? (2 pts.) d) Let $I=\{0\}$. Find $\sqrt{ } I$ in cases $R=\mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z}, \mathbb{Z} / 9 \mathbb{Z}$, $\mathbb{Z} / 18 \mathbb{Z}, \mathbb{Z} / 7000 \mathbb{Z}$. (6 pts.) e) Find $\sqrt{ } I$ in cases $R=\mathbb{Z}$ and $\mathbb{Z}=9 \mathbb{Z}, 12 \mathbb{Z}, 7000 \mathbb{Z}$. (6 pts.)
19. A maximal ideal of R is by definition an ideal I of R such that $I \neq R$ and if $I \subseteq J \triangleleft R$ then either $J=I$ or $J=R$. Find all maximal ideals of \mathbb{Z}. (4 pts .)
20. Suppose that $R \backslash R^{*} \triangleleft R$. Show that $R \backslash R^{*}$ is the unique maximal ideal of R. (3 pts.)
21. Let $I \triangleleft R$ and $a, b \in R$. Show that either $a+I=b+I$ or $(a+I) \cap(b+I)=\varnothing$. (6 pts.)
22. Let $I \triangleleft R$. Show that the binary relation \equiv defined by $a \equiv b$ iff $a-b \in I$ is an equivalence relation. (3 pts.) Describe the class of a for this equivalence relation. (3 pts.)
23. Let R / I denote the set of equivalence classes for the above equivalence relation. Show that the operations $[x]+[y]=[x+y]$ and $[x][y]=[x y]$ on R / I are well-defined and turn R / I into a ring (4 pts.). Show that the map π from R into R / I defined by $\pi(x)=[x]$ respects addition and multiplication. (2 pts.)
24. Let I be an ideal of R and let $I \subseteq J \triangleleft R$. Let $J / I=\{[x]: x \in J\}$. Show that $J / I \triangleleft R / I$. (5 pts.) Conversely show that any ideal of R / I is of the form J / I for some ideal J of R containing I. (6 pts.)
25. Show that the map φ from the set of ideals of R containing I into the set of ideals of R / I defined by $\varphi(J)=J / I$ is a bijection respecting inclusion. (4 pts.)
26. Show that an ideal I of R is maximal if and only if the ring R / I is a field. (6 pts.)

