Math 112 Final Exam June 2007 Ali Nesin

Let *R* be a commutative ring with 1. A subset *I* of *R* is called an *ideal* of *R* if $I \neq \emptyset$, $I - I \subseteq I$ and $RI \subseteq I$. In this case we write $I \lhd R$.

- 1. Show that a subset *I* of *R* is an ideal if and only if $0 \in R$, $I + I \subseteq I$ and $RI \subseteq I$. (4 pts.)
- **2.** Given $x \in R$, show that $Rx \triangleleft R$. (2 pts.)
- **3.** Given $x, y \in R$, show that $Rx + Ry \triangleleft R$. (2 pts.)
- **4.** Let *R* be a ring and $\Pi_{\mathbb{N}} R$ be the set of sequences whose terms are in *R*. Then $\Pi_{\mathbb{N}} R$ is a ring with the usual operations of addition and multiplication of sequences. Let $\bigoplus_{\mathbb{N}} R$ be the set of sequences with only finitely many non-zero terms. Show that $\bigoplus_{\mathbb{N}} R \triangleleft \Pi_{\mathbb{N}} R$. (3 pts.)
- 5. Show that any ring has at least two ideals. (2 pts.)
- 6. Let *R* and *S* be two rings. Then $R \times S$ is also a ring. Show that an ideal of $R \times S$ is of the form $I \times J$ for some ideals $I \triangleleft R$ and $J \triangleleft S$. (6 pts.)
- 7. Show that an ideal that contains an invertible element must be equal to R. (4 pts.)
- 8. Show that a ring has only two ideals if and only if it is a field. (5 pts.)
- 9. Show that the intersection of any set of ideals is an ideal. (4 pts.)

10. Given any subset X of R show that there is a smallest ideal containing X and show that this ideal is $\{r_1x_1 + ... + r_nx_n : n \in \mathbb{N}, r_i \in R, x_i \in X\}$. This is called the ideal *generated* by X and is denoted by $\langle X \rangle$. (6 pts.)

- **11.** Let *I* and *J* be two ideals of *R*. Show that $I \cup J$ is an ideal if and only if one of *I* and *J* is a subset of the other. (4 pts.)
- **12.** Let $I, J \triangleleft R$. Show that $I + J \triangleleft R$ and it is the smallest ideal containing *I* and *J*. (3 pts.)
- **13.** Let $e \in R$ be such that $e^2 = e$. Let f = 1 e. Show that $f^2 = f$. (2 pts.) Show that $Re \cap Rf = \{0\}$ and that R = Re + Rf. (5 pts.) Show that Re is a ring with an identity (but usually it is not a subring of R; 5 pts.) Show that the map *i* from $Re \times Rf$ into R defined by i(x, y) = x + y

is a bijection that respects addition and multiplication. (5 pts.)

14. Let $I, J \triangleleft R$. Show that the set

 $IJ = \{x_1y_1 + \dots + x_ny_n : n \in \mathbb{N}, x_i \in I, y_i \in J\}$

is an ideal contained in $I \cap J$. (3 pts.)

15. Let *I*, *J*, $K \triangleleft R$. Show that I(JK) and (IJ)K. (3 pts.)

- **16.** Let *I*, *J*, $K \triangleleft R$. What is the relationship between I(J + K) and IJ + IK? (4 pts.)
- **17.** Find all ideals of the ring \mathbb{Z} . (5 pts.)
- **18.** For $I \triangleleft R$, let $\sqrt{I} = \{r \in R : r^n \in I \text{ for some } n \in \mathbb{N}\}$. **a**) Show that \sqrt{I} is an ideal of R containing I. (5 pts.) **b**) Show that $\sqrt{\sqrt{I}} = \sqrt{I}$. (3 pts.) **c**) What is the relationship between $\sqrt{(IJ)}$ and $\sqrt{I}\sqrt{J}$? (2 pts.) **d**) Let $I = \{0\}$. Find \sqrt{I} in cases $R = \mathbb{Z}$, $\mathbb{Z}/6\mathbb{Z}$, $\mathbb{Z}/9\mathbb{Z}$, $\mathbb{Z}/18\mathbb{Z}$, $\mathbb{Z}/7000\mathbb{Z}$. (6 pts.) **e**) Find \sqrt{I} in cases $R = \mathbb{Z}$ and $\mathbb{Z} = 9\mathbb{Z}$, $12\mathbb{Z}$, $7000\mathbb{Z}$. (6 pts.)

- **19.** A *maximal ideal* of *R* is by definition an ideal *I* of *R* such that $I \neq R$ and if $I \subseteq J \triangleleft R$ then either J = I or J = R. Find all maximal ideals of \mathbb{Z} . (4 pts.)
- **20.** Suppose that $R \setminus R^* \triangleleft R$. Show that $R \setminus R^*$ is the **unique** maximal ideal of *R*. (3 pts.)
- **21.** Let $I \triangleleft R$ and $a, b \in R$. Show that either a + I = b + I or $(a + I) \cap (b + I) = \emptyset$. (6 pts.)
- **22.** Let $I \triangleleft R$. Show that the binary relation \equiv defined by $a \equiv b$ iff $a b \in I$ is an equivalence relation. (3 pts.) Describe the class of *a* for this equivalence relation. (3 pts.)
- **23.** Let *R/I* denote the set of equivalence classes for the above equivalence relation. Show that the operations [x] + [y] = [x + y] and [x][y] = [xy] on *R/I* are well-defined and turn *R/I* into a ring (4 pts.). Show that the map π from *R* into *R/I* defined by $\pi(x) = [x]$ respects addition and multiplication. (2 pts.)
- **24.** Let *I* be an ideal of *R* and let $I \subseteq J \triangleleft R$. Let $J/I = \{[x] : x \in J\}$. Show that $J/I \triangleleft R/I$. (5 pts.) Conversely show that any ideal of R/I is of the form J/I for some ideal *J* of *R* containing *I*. (6 pts.)
- **25.** Show that the map φ from the set of ideals of *R* containing *I* into the set of ideals of *R*/*I* defined by $\varphi(J) = J/I$ is a bijection respecting inclusion. (4 pts.)
- **26.** Show that an ideal *I* of *R* is maximal if and only if the ring R/I is a field. (6 pts.)