Second Midterm Math 111 January 1998 Ali Nesin

<u>Notation</u>: \mathbb{N} denotes the set of natural numbers. \mathbb{Z} denotes the set of integers. \mathbb{R} denotes the set of real numbers. If *X* is a set, $\wp(X)$ denotes the set of subsets of *X* and Id_X denotes the identity map on *X*, i.e. $\mathrm{Id}_X(x) = x$ for all $x \in X$. The symbol $f \circ g$ denotes the composition of the functions f and g whenever it makes sense; thus $(f \circ g)(x) = f(g(x))$. The symbol f^2 denotes the function $f \circ f$ whenever it makes sense.

1. Write all the elements of $\wp(\wp(\{1,2\}))$.

2. Does the following sets have a maximal and a minimal element (for the inclusion)?

a) {
$$x \in \mathcal{D}(\mathbb{N})$$
: $1 \in x, 2 \notin x$ }

b) { $x \in \wp(\mathbb{N})$: $\exists n \in \mathbb{N} \forall m > n \ (m \notin x)$ }

c) { $x \in \mathcal{D}(\mathcal{D}(\mathbb{N}))$: $a \mathbb{N} \in x$ for all $a \in \mathbb{N}$ }

3. Find all the bijections f of the set 4 for which $f^3 = Id_4$.

4. Find all the bijections $f: \mathbb{N} \to \mathbb{N}$ for which

$$x < y \Longrightarrow f(x) < f(y)$$

for all $x, y \in \mathbb{N}$.

5. Let $f: \mathbb{N} \to \mathbb{Z}$ be given by $f(x) = x - x^2$ and $g: \mathbb{Z} \to \mathbb{R}$ be given by $g(x) = x/(1+x^2)$. Compute $(g \circ f)(3)$. For what values of x, does $(g \circ f)(x) \ge 0$?

6. Let *X* be a set and *f*: $X \to X$ be a function such that f^2 is a bijection. Show that *f* is a bijection.

7. Give an example of a nonconstant function $f: \mathbb{N} \to \mathbb{N}$ such that $f \neq \text{Id}_{\mathbb{N}}$ and $f^2 = f$. 8. Show that for any nonzero natural number n,

$$\frac{1}{1}\frac{1}{3} + \frac{1}{3}\frac{1}{5} + \frac{1}{5}\frac{1}{7} + \dots + \frac{1}{2n-1}\frac{1}{2n+1} = \frac{n}{2n+1}$$

9. Let *A*, *B*, *C* be three sets. Show that $(A \cap C) \setminus (B \cap C) \subseteq A \setminus B$.

10. Let *X* be a set. A set *Y* is said to be a **choice set** for *X*, if for any $x \in X$ there is a unique element $y \in Y$ such that $y \in x$. Find a choice set for $X = \{\{0,1\},\{1,2\}\}$. Find a set *X* which has no choice function.