Second Midterm

Math 111

January 1998
Ali Nesin

Notation: \mathbb{N} denotes the set of natural numbers. \mathbb{Z} denotes the set of integers. \mathbb{R} denotes the set of real numbers. If X is a set, $\wp(X)$ denotes the set of subsets of X and Id_{X} denotes the identity map on X, i.e. $\operatorname{Id}_{X}(x)=x$ for all $x \in X$. The symbol f o g denotes the composition of the functions f and g whenever it makes sense; thus $(f \circ g)(x)=f(g(x))$. The symbol f^{2} denotes the function f of whenever it makes sense.

1. Write all the elements of $\wp(\wp(\{1,2\}))$.
2. Does the following sets have a maximal and a minimal element (for the inclusion)?
a) $\{x \in \wp(\mathbb{N}): 1 \in x, 2 \notin x\}$
b) $\{x \in \wp(\mathbb{N}): \exists n \in \mathbb{N} \forall m>n(m \notin x)\}$
c) $\{x \in \wp(\wp(\mathbb{N})): a \mathbb{N} \in \boldsymbol{x}$ for all $a \in \mathbb{N}\}$
3. Find all the bijections f of the set 4 for which $f^{3}=\mathrm{Id}_{4}$.
4. Find all the bijections $f: \mathbb{N} \rightarrow \mathbb{N}$ for which

$$
x<y \Rightarrow f(x)<f(y)
$$

for all $x, y \in \mathbb{N}$.
5. Let $f: \mathbb{N} \rightarrow \mathbb{Z}$ be given by $f(x)=x-x^{2}$ and $g: \mathbb{Z} \rightarrow \mathbb{R}$ be given by $g(x)=x /\left(1+x^{2}\right)$. Compute $(g \circ f)(3)$. For what values of x , does $(g \circ f)(x) \geq 0$?
6. Let X be a set and $f: X \rightarrow X$ be a function such that f^{2} is a bijection. Show that f is a bijection.
7. Give an example of a nonconstant function $f: \mathbb{N} \rightarrow \mathbb{N}$ such that $f \neq \operatorname{Id} \mathbb{N}$ and $f^{2}=f$.
8. Show that for any nonzero natural number n,

$$
\frac{1}{1} \frac{1}{3}+\frac{1}{3} \frac{1}{5}+\frac{1}{5} \frac{1}{7}+\ldots+\frac{1}{2 n-1} \frac{1}{2 n+1}=\frac{n}{2 n+1}
$$

9. Let A, B, C be three sets. Show that $(A \cap C) \backslash(B \cap C) \subseteq A \backslash B$.
10. Let X be a set. A set Y is said to be a choice set for X, if for any $x \in X$ there is a unique element $y \in Y$ such that $y \in x$. Find a choice set for $X=\{\{0,1\},\{1,2\}\}$. Find a set X which has no choice function.
