CourseWork Questions

2a. Let $(E_n)_{n \in \mathbb{N}}$ be a sequence of disjoint sets and for each $n, m \in N$ such that $n \leq m$, let f_{mn} be a function from E_n into E_m . Suppose that the functions f_{nm} satisfy the following two properties:

a) $f_{nn} = \operatorname{Id}_{E_n}$ for all n.

b) $f_{pn} = f_{pm}$ o f_{mn} for all $p \ge m \ge n$.

Let *E* be the union of the sets E_n . For $x, y \in E$, define: $x \approx y$ iff $x \in E_n$, $y \in E_m$ and there is a *p* greater than *n* and *m* such that $f_{pn}(x) = f_{pm}(y)$.

Show that \approx is an equivalence relation on *E*.

2b. Show that $x \approx y$ iff for $s = \max(n, m)$, the sequences $(f_{pn}(x))p > s$ and $(f_{pn}(y))p > s$ coincide for large enough p.

2c. Suppose now that each E_n is a group and that the functions *fnm* are group homomorphisms. For $x \in E$, let [x] denote the equivalence class of x. (So $[x] \in E/\approx$).

For $x, y \in E$, define $[x] [y] = [f_{pn}(x)f_{pm}(y)]$ where n, m, p are such that $x \in E_n, y \in E_m, p > n$ and p > m.

Show that this is a well-defined product and that it turns E/\approx into a group.

3a. Let *p* be a prime and let $E_n = \mathbb{Z}/p^n\mathbb{Z}$. For $m \ge n$, define $f_{mn}: E_n \to E_m$ by $f_{mn}(x) = p^{m-n}x$. Show that the functions fmn are well-defined and that they satisfy the hypothesis of Question 2a.