CourseWork Questions

2a. Let $\left(E_{n}\right)_{n \in \mathbf{N}}$ be a sequence of disjoint sets and for each $n, m \in N$ such that $n \leq$ m, let $f_{m n}$ be a function from E_{n} into E_{m}. Suppose that the functions $f_{n m}$ satisfy the following two properties:
a) $f_{n n}=\operatorname{Id}_{E_{n}}$ for all n.
b) $f_{p n}=f_{p m} \mathrm{o} f_{m n}$ for all $p \geq m \geq n$.

Let E be the union of the sets E_{n}. For $x, y \in E$, define: $x \approx y$ iff $x \in E_{n}, y \in E_{m}$ and there is a p greater than n and m such that $f_{p n}(x)=f_{p m}(y)$.

Show that \approx is an equivalence relation on E.
2b. Show that $x \approx y$ iff for $s=\max (n, m)$, the sequences $\left(f_{p n}(x)\right) p>s$ and $\left(f_{p n}(y)\right) p>$ s coincide for large enough p.

2c. Suppose now that each E_{n} is a group and that the functions fnm are group homomorphisms. For $x \in E$, let $[x]$ denote the equivalence class of x. (So $[x] \in E / \approx$).

For $x, y \in E$, define $[x][y]=\left[f_{p n}(x) f_{p m}(y)\right]$ where n, m, p are such that $x \in E_{n}, y \in$ $E_{m}, p>n$ and $p>m$.

Show that this is a well-defined product and that it turns E / \approx into a group.

3a. Let p be a prime and let $E_{n}=\mathbb{Z} / p^{n} \mathbb{Z}$. For $m \geq n$, define $f_{m n}: E_{n} \rightarrow E_{m}$ by $f_{m n}(x)=$ $p^{m-n} x$. Show that the functions fmn are well-defined and that they satisfy the hypothesis of Question 2a.

