Math 112 Final Exam June 7, 2005 Ali Nesin

1. Let *B* be a set. Let $A \subseteq B$. Assume that *A* is well-ordered say by <. Show that the well-order < on *A* can be extended to a well-order on *B* in such a way that *A* is an initial segment of *B*. (10 pts.)

Proof: Let *Z* be the set of well-ordered sets (X, <) such that

a) $A \subseteq X \subseteq B$,

b) (X, <) extends the order < of A,

c) *A* is an initial segment of *X*.

Order *Z* as follows: $(X, <_X) \le (Y, <_Y)$ if

a)
$$X \subseteq Y$$
,

b) $<_Y$ extends $<_X$

c) *X* is an initial segment of *Y*.

Then *Z* is nonempty and is an inductive set: If $(X_i, <_i)_{i \in I}$ is a chain from *Z* then $\bigcup_{i \in I} X_i$ can be well-ordered naturally extending the order of each X_i and as such $X_i \leq \bigcup_{i \in I} X_i$ for each $i \in I$.

It follows from Zorn's Lemma that *Z* has a maximal element, say (C, <). If $C \subset B$, then take any $b \in B \setminus C$ and extend the order of *C* to the set $C \cup \{b\}$ by putting *b* to the very end of *C*. Then $(C, <) < (C \cup \{b\}, <)$ and this contradicts the maximality of (C, <).

A **cardinal number** is an ordinal number κ such that there is no bijection between κ and any ordinal $\alpha < \kappa$.

2. Show that each natural number is a cardinal number. (5 pts.)

Proof: We will show that, for any $n \in \omega$, there is no one-to-one map from *n* into any m < n. This will prove that each $n \in \omega$ is a cardinal number. Clearly 0 is a cardinal number. Assuming $n \in \omega$ is a cardinal number we show that S(n) is a cardinal number. Assume there is an $m \in S(n) = n \cup \{n\}$ and a one to one map $f : S(n) \to m$. Set $f(n) = i \in m$. Then *f* induces a one to one map $g : n \to m \setminus \{i\}$. Since $i \in m, m \neq 0$; so there is a *k* such that m = S(k). Define $h : m \setminus \{i\} \to k$ by h(j) = j if j < i and h(j) = j - 1 if j > i. Then *h* is a bijection from $m \setminus \{i\}$ into *k*. Now $h \circ g : n \to k$ is a one to one map. Since $k < S(k) = m \leq n$, this contradicts the inductive assumption.

3. Show that ω is a cardinal number. (4 pts.)

Proof: We need to show that there is no one to one map from ω into a natural number $n \in \omega$. We proceed by induction. If n = 0 this is clear. Let $f : \omega \to S(n)$ be a one to one map. Assume $f(0) = i \in S(n)$. Then $f \circ S : \omega \to S(n) \setminus \{i\}$ is a one to one map. As above, we can find a bijection *g* between $S(n) \setminus \{i\}$ and *n*. Thus $g \circ f \circ S$ is a one to one map from ω into *n* and this contradicts the inductive assumption.

4. Find an ordinal which is not a cardinal. (2 pts.)

Proof: $S(\omega)$ is not a cardinal because the map $f : S(\omega) \to \omega$ defined by $f(\omega) = 0$ and f(n) = S(n) for all $n \in \omega$ is a bijection.

5. Show that if X is a set then there is a unique cardinal number κ such that there is a bijection between X and κ . This κ is called the cardinality of X and is denoted by |X|. (5 pts.)

Proof: By taking $A = \emptyset$ in Q1, we know that *X* can be well-ordered. Thus there is a bijection between *X* and an ordinal, say α . Let $U = \{\beta \in S(\alpha) : \text{there is a bijection from } X \text{ onto } \beta\}$. Then *U* is a nonempty subset of $S(\alpha)$ because $\alpha \in U$. Hence *U* has a least element, say β . Thus there is a bijection between *X* and β and there is no bijection between *X* and any ordinal $\gamma < \beta$. Hence β must be a cardinal number.

6. Show that if X is infinite (meaning $|X| \ge \omega$) and $x \in X$ then $|X \setminus \{x\}| = |X|$. (8 pts.)

Proof: By Q1 we can well order X so that x is the least element. Thus we can assume that $X = \kappa$ is a cardinal number and that x = 0. We have to show that there is a bijection between κ and $\kappa \setminus \{0\}$. Since κ is infinite, $\omega \subseteq \kappa$ and it is enough to show that there is a bijection between ω and $\omega \setminus \{0\}$. This is easy: S is such a bijection.

7. Show that if α is a cardinal number $\geq \omega$ then α is a limit ordinal. (5 pts.)

Proof: We have to show that if α is an infinite ordinal then $S(\alpha)$ is not a cardinal. We will show that there is a bijection between $S(\alpha)$ and α , proving that $S(\alpha)$ cannot be an ordinal. Setting $X = S(\alpha)$ in Q7, we obtain the result.

8. Show that for each cardinal number κ there is a unique cardinal number λ such that $\kappa < \lambda$ and that there is no cardinal number α such that $\kappa < \alpha < \lambda$. We denote this cardinal number by κ^+ . (6 pts.)

Proof: Let $|\mathcal{P}(\kappa)| = \lambda$. If $\lambda \le \kappa$ then there would be a one to one map *f* from $\mathcal{P}(\kappa)$ into κ . Define $g : \kappa \to \mathcal{P}(\kappa)$ by $g(\alpha) = f^{-1}(\alpha)$ if $\alpha \in f(\mathcal{P}(\kappa))$ and let $g(\alpha) = \emptyset$ if $\alpha \notin f(\mathcal{P}(\kappa))$. Then *g* is onto. But as we know there is no such map.

9. Let α and β be two cardinal numbers. Find two disjoint sets *A* and *B* such that $|A| = \alpha$ and $|B| = \beta$. (2 pts.)

Proof: Let $A = \alpha \times \{0\}$ and $B = \beta \times \{1\}$.

10. If α , β , *A* and *B* are as above, we define,

$$\alpha + \beta = |A \cup B|$$

$$\alpha\beta = |A \times B|$$

$$\alpha^{\beta} = |A^{B}|.$$

(Here A^B is the set of functions from *B* into *A*). What do you need to show for this to be a valid definition? (2 pts.) Do we really need *A* and *B* to be disjoint in all three definitions? (3 pts.)

11. Show that $\kappa < 2^{\kappa}$. (4 pts.)

12. For any cardinal number κ , find $\kappa + 0$, 0κ , κ^0 , 0^{κ} , 1κ , κ^1 , 1^{κ} (3 pts.)

13. Show that for any cardinal numbers α , β , γ ,

 $\alpha + \beta = \beta + \alpha$ $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ $\alpha\beta = \beta\alpha$ $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ $\alpha^{\beta}\alpha^{\gamma} = \alpha^{\beta+\gamma}$ $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$ $\alpha^{\gamma}\beta^{\gamma} = (\alpha\beta)^{\gamma}$ (16 pts.)

14. Show that if at least one of α and β is an infinite cardinal number and if thety are both nonzero then $\alpha + \beta = \max{\{\alpha, \beta\}}$ and $\alpha\beta = \max{\{\alpha, \beta\}}$. (5 pts.)

15. Show that if $\alpha \leq \beta$ and $\gamma \leq \delta$ are cardinal numbers, then

$$\begin{aligned} \alpha + \gamma &\leq \beta + \delta \\ \alpha \gamma &\leq \beta \delta \\ \alpha^{\gamma} &\leq \beta^{\delta} \text{ unless } \alpha = \gamma = \beta = 0 < \delta \end{aligned}$$

(9 pts.)

14. Let $(\alpha_i)_{i \in I}$ be a family of cardinal numbers. Show that there is a family $(A_i)_i$ of sets such that $|A_i| = \alpha_i$ and $A_i \cap A_j = \emptyset$ for all distinct $i, j \in I$. (2 pts.)

15. Let $(\alpha_i)_{i \in I}$ and $(A_i)_i$ be as above. Define

 $\sum_{i\in I} \alpha_i = |\bigcup_{i\in I} A_i|$

and

 $\prod_{i\in I} \alpha_i = |\prod_{i\in I} A_i|.$

Do we need the sets A_i to be pairwise disjoint in both definitions? (2 pts.)

16. Let $(\alpha_i)_{i \in I}$ be a family of cardinal numbers. Assume that for some cardinal number α , $\alpha_i = \alpha$ for all *i*. Show that $\sum_{i \in I} \alpha_i = \alpha |I|$ and $\prod_{i \in I} \alpha_i = \alpha^{|I|}$. (6 pts.)

17. Let $(\alpha_i)_{i \in I}$ and $(\beta_i)_{i \in I}$ be two families of cardinal numbers. Assume that $\alpha_i \leq \beta_i$ for all $i \in I$. Show that $\sum_{i \in I} \alpha_i \leq \sum_{i \in I} \beta_i$ and that $\prod_{i \in I} \alpha_i \leq \prod_{i \in I} \beta_i$. (6 pts.)

18. Let $(\alpha_i)_{i \in I}$ and $(\beta_i)_{i \in I}$ be two families of cardinal numbers. If $\alpha_i < \beta_i$ for all *i* then $\sum_{i \in I} \alpha_i < \prod_{i \in I} \beta_i$ (König's Theorem). (20 pts.)