Math 112 Final Exam

June 7, 2005
Ali Nesin

1. Let B be a set. Let $A \subseteq B$. Assume that A is well-ordered say by $<$. Show that the wellorder < on A can be extended to a well-order on B in such a way that A is an initial segment of B. (10 pts.)

Proof: Let Z be the set of well-ordered sets $(X,<)$ such that
a) $A \subseteq X \subseteq B$,
b) ($X,<$) extends the order $<$ of A,
c) A is an initial segment of X.

Order Z as follows: $\left(X,<_{X}\right) \leq\left(Y,<_{Y}\right)$ if
a) $X \subseteq Y$,
b) $<_{Y}$ extends $<_{X}$
c) X is an initial segment of Y.

Then Z is nonempty and is an inductive set: If $\left(X_{i},\left\langle_{i}\right)_{i \in I}\right.$ is a chain from Z then $\cup_{i \in I} X_{i}$ can be well-ordered naturally extending the order of each X_{i} and as such $X_{i} \leq \cup_{i \in I} X_{i}$ for each $i \in I$.

It follows from Zorn's Lemma that Z has a maximal element, say $(C,<)$. If $C \subset B$, then take any $b \in B \backslash C$ and extend the order of C to the set $C \cup\{b\}$ by putting b to the very end of C. Then $(C,<)<(C \cup\{b\},<)$ and this contradicts the maximality of $(C,<)$.

A cardinal number is an ordinal number κ such that there is no bijection between κ and any ordinal $\alpha<\kappa$.
2. Show that each natural number is a cardinal number. (5 pts .)

Proof: We will show that, for any $n \in \omega$, there is no one-to-one map from n into any $m<$ n. This will prove that each $n \in \omega$ is a cardinal number. Clearly 0 is a cardinal number. Assuming $n \in \omega$ is a cardinal number we show that $S(n)$ is a cardinal number. Assume there is an $m \in S(n)=n \cup\{n\}$ and a one to one $\operatorname{map} f: S(n) \rightarrow m$. Set $f(n)=i \in m$. Then f induces a one to one map $g: n \rightarrow m \backslash\{i\}$. Since $i \in m, m \neq 0$; so there is a k such that $m=S(k)$. Define h $: m \backslash\{i\} \rightarrow k$ by $h(j)=j$ if $j<i$ and $h(j)=j-1$ if $j>i$. Then h is a bijection from $m \backslash\{i\}$ into k. Now $h \circ g: n \rightarrow k$ is a one to one map. Since $k<S(k)=m \leq n$, this contradicts the inductive assumption.
3. Show that ω is a cardinal number. (4 pts.)

Proof: We need to show that there is no one to one map from ω into a natural number $n \in$ ω. We proceed by induction. If $n=0$ this is clear. Let $f: \omega \rightarrow S(n)$ be a one to one map. Assume $f(0)=i \in S(n)$. Then $f \circ S: \omega \rightarrow S(n) \backslash\{i\}$ is a one to one map. As above, we can find a bijection g between $S(n) \backslash\{i\}$ and n. Thus $g \circ f \circ S$ is a one to one map from ω into n and this contradicts the inductive assumption.
4. Find an ordinal which is not a cardinal. (2 pts.)

Proof: $S(\omega)$ is not a cardinal because the map $f: S(\omega) \rightarrow \omega$ defined by $f(\omega)=0$ and $f(n)=$ $S(n)$ for all $n \in \omega$ is a bijection.
5. Show that if X is a set then there is a unique cardinal number κ such that there is a bijection between X and κ. This κ is called the cardinality of X and is denoted by $|X|$. (5 pts.)

Proof: By taking $A=\varnothing$ in Q 1 , we know that X can be well-ordered. Thus there is a bijection between X and an ordinal, say α. Let $U=\{\beta \in S(\alpha)$: there is a bijection from X onto $\beta\}$. Then U is a nonempty subset of $S(\alpha)$ because $\alpha \in U$. Hence U has a least element, say β. Thus there is a bijection between X and β and there is no bijection between X and any ordinal $\gamma<\beta$. Hence β must be a cardinal number.
6. Show that if X is infinite (meaning $|X| \geq \omega$) and $x \in X$ then $|X \backslash\{x\}|=|X|$. (8 pts.)

Proof: By Q1 we can well order X so that x is the least element. Thus we can assume that $X=\kappa$ is a cardinal number and that $x=0$. We have to show that there is a bijection between κ and $\kappa \backslash\{0\}$. Since κ is infinite, $\omega \subseteq \kappa$ and it is enough to show that there is a bijection between ω and $\omega \backslash\{0\}$. This is easy: S is such a bijection.
7. Show that if α is a cardinal number $\geq \omega$ then α is a limit ordinal. (5 pts.)

Proof: We have to show that if α is an infinite ordinal then $S(\alpha)$ is not a cardinal. We will show that there is a bijection between $S(\alpha)$ and α, proving that $S(\alpha)$ cannot be an ordinal. Setting $X=S(\alpha)$ in Q7, we obtain the result.
8. Show that for each cardinal number κ there is a unique cardinal number λ such that $\kappa<$ λ and that there is no cardinal number α such that $\kappa<\alpha<\lambda$. We denote this cardinal number by κ^{+}. (6 pts.)

Proof: Let $|\wp(\kappa)|=\lambda$. If $\lambda \leq \kappa$ then there would be a one to one $\operatorname{map} f$ from $\wp(\kappa)$ into κ. Define $g: \kappa \rightarrow \wp(\kappa)$ by $g(\alpha)=f^{-1}(\alpha)$ if $\alpha \in f(\wp(\kappa))$ and let $g(\alpha)=\varnothing$ if $\alpha \notin f(\wp(\kappa))$. Then g is onto. But as we know there is no such map.
9. Let α and β be two cardinal numbers. Find two disjoint sets A and B such that $|A|=\alpha$ and $|B|=\beta$. (2 pts.)

Proof: Let $A=\alpha \times\{0\}$ and $B=\beta \times\{1\}$.
10. If α, β, A and B are as above, we define,

$$
\begin{aligned}
& \alpha+\beta=|A \cup B| \\
& \alpha \beta=|A \times B| \\
& \alpha^{\beta}=\left|A^{B}\right| .
\end{aligned}
$$

(Here A^{B} is the set of functions from B into A). What do you need to show for this to be a valid definition? (2 pts .) Do we really need A and B to be disjoint in all three definitions? (3 pts.)
11. Show that $\kappa<2^{\kappa}$. (4 pts.)
12. For any cardinal number κ, find $\kappa+0,0 \kappa, \kappa^{0}, 0^{\kappa}, 1 \kappa, \kappa^{1}, 1^{\kappa}(3 \mathrm{pts}$.)
13. Show that for any cardinal numbers α, β, γ,

$$
\begin{aligned}
& \alpha+\beta=\beta+\alpha \\
& (\alpha+\beta)+\gamma=\alpha+(\beta+\gamma) \\
& \alpha \beta=\beta \alpha \\
& (\alpha \beta) \gamma=\alpha(\beta \gamma) \\
& \alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma \\
& \alpha^{\beta} \alpha^{\gamma}=\alpha^{\beta+\gamma} \\
& \left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \gamma} \\
& \alpha^{\gamma} \beta^{\gamma}=(\alpha \beta)^{\gamma}
\end{aligned}
$$

(16 pts.)
14. Show that if at least one of α and β is an infinite cardinal number and if thety are both nonzero then $\alpha+\beta=\max \{\alpha, \beta\}$ and $\alpha \beta=\max \{\alpha, \beta\}$. (5 pts .)
15. Show that if $\alpha \leq \beta$ and $\gamma \leq \delta$ are cardinal numbers, then

$$
\begin{aligned}
& \alpha+\gamma \leq \beta+\delta \\
& \alpha \gamma \leq \beta \delta \\
& \alpha^{\gamma} \leq \beta^{\delta} \text { unless } \alpha=\gamma=\beta=0<\delta
\end{aligned}
$$

(9 pts.)
14. Let $\left(\alpha_{i}\right)_{i \in I}$ be a family of cardinal numbers. Show that there is a family $\left(A_{i}\right)_{i}$ of sets such that $\left|A_{i}\right|=\alpha_{i}$ and $A_{i} \cap A_{j}=\varnothing$ for all distinct $i, j \in I$. (2 pts.)
15. Let $\left(\alpha_{i}\right)_{i \in I}$ and $\left(A_{i}\right)_{i}$ be as above. Define

$$
\sum_{i \in I} \alpha_{i}=\left|\cup_{i \in I} A_{i}\right|
$$

and

$$
\Pi_{i \in I} \alpha_{i}=\left|\prod_{i \in I} A_{i}\right| .
$$

Do we need the sets A_{i} to be pairwise disjoint in both definitions? (2 pts .)
16. Let $\left(\alpha_{i}\right)_{i \in I}$ be a family of cardinal numbers. Assume that for some cardinal number α, $\alpha_{i}=\alpha$ for all i. Show that $\sum_{i \in I} \alpha_{i}=\alpha|I|$ and $\prod_{i \in I} \alpha_{i}=\alpha^{l / I}$. (6 pts.)
17. Let $\left(\alpha_{i}\right)_{i \in I}$ and $\left(\beta_{i}\right)_{i \in I}$ be two families of cardinal numbers. Assume that $\alpha_{i} \leq \beta_{i}$ for all i $\in I$. Show that $\sum_{i \in I} \alpha_{i} \leq \sum_{i \in I} \beta_{i}$ and that $\prod_{i \in I} \alpha_{i} \leq \prod_{i \in I} \beta_{i \text {. }}$ (6 pts .)
18. Let $\left(\alpha_{i}\right)_{i \in I}$ and $\left(\beta_{i}\right)_{i \in I}$ be two families of cardinal numbers. If $\alpha_{i}<\beta_{i}$ for all i then $\Sigma_{i \in I} \alpha_{i}<\prod_{i \in I} \beta_{i}$ (König's Theorem). (20 pts.)

