Math 111 - Set Theory
 Midterm
 May 2007
 Ali Nesin

Write correctly, with correct puctuation and make simple and full sentences. Do not use logical symbols such as $\forall, \exists, \Rightarrow$.

The first part is much easier than the second. I advise strongly not to attack the second part unless you are sure that you succeeded the first part.

I don't wish good luck since there will be no luck involved!
Let X be a nonempty set, which will be fixed throughout the exam. A filter on X is a set \mathcal{F} of subsets of X (hence $\mathcal{F} \subseteq \wp(X)$) that satisfies the following three properties:
i) If $A \in \mathcal{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathcal{F}$.
ii) If A and B are in \mathfrak{I}, then so is $A \cap B$.
iii) $\varnothing \notin \mathcal{F}$ and $X \in \mathcal{F}$.

Part I

1. Show that if $\varnothing \neq A \subseteq X$ then the set of subsets $\mathcal{F}(A)$ of X that contain A is a filter on X. Such a filter is called principal.
2. Show that if $\varnothing \neq A \subseteq B \subseteq X$ then $\mathcal{F}(B) \subseteq \mathcal{F}(A)$.
3. Show that for $A, B \subseteq X, \mathcal{F}(A) \cap \mathcal{F}(B)=\mathcal{F}(A \cup B)$.
4. Show that a filter that contains a finite subset of X is necessarily principal.
5. Suppose X is infinite. A subset A of X is called cofinite if its complement $X \backslash$ A is finite. Show that the set of cofinite subsets of X is a nonprincipal filter on X. This filter is called the Fréchet filter (on X).
6. Show that a nonprinciple filter necessarily contains the Fréchet filter.
7. Show that the intersection of any set of filters is a filter.
8. Let $(I,<)$ be an ordered set such that for each $i, j \in I$ there is a $k \in I$ such that $i \leq k$ and $j \leq k$. For each $i \in I$, let \mathcal{F}_{i} be a filter on X. Suppose that for $i<j, \mathcal{F}_{i} \subseteq \mathcal{F}_{j}$ and that $\left\{\mathcal{F}_{i}: i \in I\right\}$ is a set. Show that $\cup_{i \in I} \mathcal{F}_{i}$ is a filter.
9. Let $\mathcal{B} \subseteq \wp(X)$ be contained in a filter. Show that there are no $A_{1}, \ldots, A_{n} \in \mathcal{B}$ such that $A_{1} \cap \ldots \cap A_{n}=\varnothing$. A subset \mathcal{B} of $\wp(X)$ satisfying this property is said to have the finite intersection property, FIP for short.
10. Conversely show that any $\mathcal{B} \subseteq \wp(X)$ that satisfies FIP is contained in a filter.
11. A filter is called ultrafilter if it is a maximal filter, i.e. if it is not a proper subset of another filter. For what subsets $A \subseteq X$, is the principal filter $\mathcal{F}(A)$ an ultrafilter?
12. Show that a filter \mathfrak{I} on X is an ultrafilter if and only if for any $A \subseteq X$, either A or $X \backslash A$ is in \mathcal{F}.

Part II

13. Let \mathcal{F} be a filter on a set X. Let Y be a set. Denote the set of functions from X into Y by $\operatorname{Func}(X, Y)$. On $\operatorname{Func}(X, Y)$ define the following binary relation:

$$
f \equiv g \Leftrightarrow\{x \in X: f(x)=g(x)\} \in \mathcal{F}
$$

Show that this is an equivalence relation on the set $\operatorname{Func}(X, Y)$.

From now on we fix two sets X and Y, a filter \mathcal{F} on X and we set \equiv as above. We let $\operatorname{Func}(X, Y) / \equiv$.
14. Let \leq be a partial order on Y. On $\operatorname{Func}(X, Y)$ define the relation \preccurlyeq by

$$
f \preccurlyeq g \text { if and only if }\{x \in X: f(x) \leq g(x)\} \in \mathcal{F} .
$$

a) Is this a partial order on $\operatorname{Func}(X, Y)$? If not what property of the partial orders fail to hold?
b) Show that if $f \preccurlyeq g$ and $f \equiv f_{1}$ and $g \equiv g_{1}$ then $f_{1} \preccurlyeq g_{1}$.
c) Conclude from above that \leq gives rise to a binary relation on $\operatorname{Func}(X, Y) / \equiv$.
d) Suppose now that \leq is a total order on Y and that \mathfrak{I} is an ultrafilter on X. Conclude from above that the binary relation on $\operatorname{Func}(X, Y) / \equiv$ defined is a total order.
e) Suppose now that \leq is a well-order on Y and that \mathfrak{I} is an ultrafilter on X. Is the binary relation on $\operatorname{Func}(X, Y) / \equiv$ defined above a well-order?
15. Let $n \in \mathbb{N}$ be any natural number >0. (To start with you may take $n=1$).

Let $f: Y^{n} \rightarrow Y$ be a function. We will define a function

$$
f^{*}: \operatorname{Func}(X, Y)^{n} \rightarrow \operatorname{Func}(X, Y)
$$

For $g_{1}, \ldots, g_{n} \in \operatorname{Func}(X, Y), f^{*}\left(g_{1}, \ldots, g_{n}\right)$ should be defined to be an element of Func (X, Y), i.e. should be a function from X into Y. To define such a function we must tell its value at an arbitrary element $x \in X$. This value is defined as follows:

$$
f^{*}\left(g_{1}, \ldots, g_{n}\right)(x)=f\left(g_{1}(x), \ldots, g_{n}(x)\right)
$$

which is really an element of Y. This defines f^{*}. Now the question: Show that if $g_{1}, \ldots, g_{n}, h_{1}, \ldots, h_{n} \in \operatorname{Func}(X, Y)$ are such that $g_{1} \equiv h_{1}, \ldots, g_{n} \equiv h_{n}$ then $f^{*}\left(g_{1}, \ldots, g_{n}\right)$ $\equiv f^{*}\left(h_{1}, \ldots, h_{n}\right)$.
16. With the above question in mind, show why any function $f: Y^{n} \rightarrow Y$ gives rise to a function $[f]: \operatorname{Func}(X, Y)^{n} \rightarrow \operatorname{Func}(X, Y)$.

