Set Theory (Math 111)
 In Class Midterm on Rational Numbers

Fall 2004
Ali Nesin
January 18, 2005

1) Do not use symbols such as \Rightarrow, \forall. 2) Make full sentences. 3) Write legibly. 4) Use correct punctuation. 5) Explain your ideas clearly. 6) You may use all the elementary facts about the structure $\langle\mathbb{Z},+, \times, \leq, 0,1\rangle$ without proof.

Let $X=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$. On X we define the binary relation:

$$
(x, y) \equiv(z, t) \Longleftrightarrow x t=y z
$$

1. Show that \equiv is an equivalence relation on X.

For $(x, y) \in X$, we let $\overline{(x, y)}$ denote the equivalence class of (x, y). We also set

$$
\mathbb{Q}=X / \equiv=\{\overline{(x, y)}:(x, y) \in X\} .
$$

2. Show that for any $(x, y) \in X$ there is an $\left(x^{\prime}, y^{\prime}\right) \in X$ such that $\overline{(x, y)}=$ $\overline{\left(x^{\prime}, y^{\prime}\right)}$ and $y^{\prime}>0$.
3. Let $(x, y),(z, t),\left(x^{\prime}, y^{\prime}\right),\left(z^{\prime}, y^{\prime}\right) \in X$. Assume $\overline{(x, y)}=\overline{\left(x^{\prime}, y^{\prime}\right)}$ and $\overline{(z, t)} \equiv$ $\overline{\left(z^{\prime}, t^{\prime}\right)}$. Show that
i. $\overline{(x t \pm y z, y t)}=\overline{\left(x^{\prime} t^{\prime} \pm y^{\prime} z^{\prime}, y^{\prime} t^{\prime}\right)}$.
ii. $\overline{(x z, y t)}=\overline{\left(x^{\prime} z^{\prime}, y^{\prime} t^{\prime}\right)}$.
iii. If $z \neq 0$, then $z^{\prime} \neq 0$ and $\overline{(x t, y z)}=\overline{\left(x^{\prime} t^{\prime}, y^{\prime} z^{\prime}\right)}$.
4. Explain why we are now entitled to define four operations, that we will call addition, substraction, multiplication and division (for the division we have to assume that $z \neq 0$), as follows:

$$
\begin{aligned}
\overline{(x, y)} \pm \overline{(z, t)} & =\overline{((x t \pm y z, y t)} \\
\overline{(x, y)} \times \overline{(z, t)} & =\overline{(x z, y t)} \\
\overline{(x, y)} / \overline{(z, t))} & =\overline{(x t, y z)}
\end{aligned}
$$

5. Find the zero element for the addition and the identity element for the multiplication. Show that each element of \mathbb{Q} has an additive inverse and that each nonzero element has a multiplicative inverse. Prove the distributivity law.
6. Define a total order on \mathbb{Q} and state the lemmas (without proving) that one needs to prove in order for your definition to make sense. For $\alpha \in \mathbb{Q}$ define $\alpha / 2$ and prove that for all $\alpha<\beta$ in $\mathbb{Q}, \alpha<(\alpha+\beta) / 2<\beta$.
