Set Theory (Math 111)
 Final

Ali Nesin

January 11, 2004

You may assume that you know all the basic arithmetic properties of $(\mathbb{Z},+, \times, 0,1)$ and $(\mathbb{N},+, \times, 0,1)$.

1. Let $X=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$. Define the relation \equiv on X by

$$
(x, y) \equiv(z, t) \Leftrightarrow x t=y z
$$

for every $(x, y),(z, t) \in X$.
a) Show that this is an equivalence relation on X.
b) Find the equivalence classes of $(0,1)$ and of $(3,3)$.
c) Show that if $(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)$ and $(z, t) \equiv\left(z^{\prime}, t^{\prime}\right)$ then $(x t+y z, y t) \equiv$ ($x^{\prime} t^{\prime}+y^{\prime} z^{\prime}, y^{\prime} t^{\prime}$).
d) Show that if $(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)$ and $(z, t) \equiv\left(z^{\prime}, t^{\prime}\right)$ then $(x z, y t) \equiv\left(x^{\prime} z^{\prime}, y^{\prime} t^{\prime}\right)$.

Proof: a. i. Reflexivity. Let $(x, y) \in X$. Then since $x y=y x$, we have $(x, y) \equiv(x, y)$.
ii. Symmetry. Let $(x, y),(z, t) \in X$ be such that $(x, y) \equiv(z, t)$. Hence $x t=y z$. Therefore $z y=t x$, implying $(z, t) \equiv(x, y)$.
iii. Transitivity. Let $(x, y),(z, t),(u, v) \in X$ be such that $(x, y) \equiv(z, t)$ and $(z, t) \equiv(u, v)$. Hence $x t=y z$ and $z v=t u$. Multiplying these equalities side by side, we get $x t z v=y z t u$. Since $t \neq 0$, by simplifying we get $x z v=y z u$. If $z \neq 0$, then we can simplify further to get $x v=y u$, hence $(x, y) \equiv(u, v)$.
Assume $z=0$. Then $x t=y z=0$ and $t u=z v=0$. Since $t \neq 0$, we get $x=u=0$, so that $x v=0=y u$ and $(x, y) \equiv(u, v)$ again.
b. $\overline{(0,1)}:=\{(x, y) \in X:(x, y) \equiv(0,1)\}=\{(x, y) \in X: x=0\}=$ $\{(0, y): y \in \mathbb{Z} \backslash\{0\}\}$.
$\overline{(3,3)}:=\{(x, y) \in X:(x, y) \equiv(3,3)\}=\{(x, y) \in X: 3 x=3 y\}=\{(x, x):$ $x \in \mathbb{Z} \backslash\{0\}\}$.
c) Assume $(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)$ and $(z, t) \equiv\left(z^{\prime}, t^{\prime}\right)$. Then $x y^{\prime}=y x^{\prime}$ and $z t^{\prime}=t z^{\prime}$. Multiplying the first one by $t t^{\prime}$ and the second one by $y y^{\prime}$ we get $x y^{\prime} t t^{\prime}=y x^{\prime} t t^{\prime}$ and $z t^{\prime} y y^{\prime}=t z^{\prime} y y^{\prime}$. Adding these two side by side we get $x y^{\prime} t t^{\prime}+z t^{\prime} y y^{\prime}=y x^{\prime} t t^{\prime}+t z^{\prime} y y^{\prime}$, and factoring, we get $(x t+y z) y^{\prime} t^{\prime}=$ $y t\left(x^{\prime} t^{\prime}+y^{\prime} z^{\prime}\right)$, meaning $(x t+y z, y t) \equiv\left(x^{\prime} t^{\prime}+y^{\prime} z^{\prime}, y^{\prime} t^{\prime}\right)$.
d) Assume $(x, y) \equiv\left(x^{\prime}, y^{\prime}\right)$ and $(z, t) \equiv\left(z^{\prime}, t^{\prime}\right)$. Then $x y^{\prime}=y x^{\prime}$ and $z t^{\prime}=t z^{\prime}$. Multiplying these two side by side, we get $x y^{\prime} z t^{\prime}=y x^{\prime} t z^{\prime}$, i.e. $x z y^{\prime} t^{\prime}=y t x^{\prime} z^{\prime}$, meaning $(x z, y t) \equiv\left(x^{\prime} z^{\prime}, y^{\prime} t^{\prime}\right)$.
2. Find a graph which has only three automorphisms.

Solution. Consider the graph whose points are

$$
\left\{a, a^{\prime}, a^{\prime \prime}, a^{\prime \prime \prime}, b, b^{\prime}, b^{\prime \prime}, b^{\prime \prime \prime}, c, c^{\prime}, c^{\prime \prime}, c^{\prime \prime \prime}\right\}
$$

and whose vertices are
$a a^{\prime}, a a^{\prime \prime}, a^{\prime \prime} a^{\prime \prime \prime}, b b^{\prime}, b b^{\prime \prime}, b^{\prime \prime} b^{\prime \prime \prime}, c c^{\prime}, c c^{\prime \prime}, c^{\prime \prime} c^{\prime \prime \prime}, a b, b c, c a, a^{\prime} b^{\prime \prime}, b^{\prime} c^{\prime \prime}, c^{\prime} a^{\prime \prime}$.
It works!
3. Let a and b be two integers which are not both 0 . We say that d is the greatest common divisor of a and b if d is the largest natural number that divides both a and b. Show that for any $a, b \in \mathbb{Z}, \operatorname{gcd}(a, b)$ exists and that there are $x, y \in \mathbb{Z}$ such that $a x+b y=\operatorname{gcd}(a, b)$.
Proof: Replacing a and b by $|a|$ and $|b|$, we may assume that $a \geq 0$ and $b \geq 0$.
Existence. Since 1 divides both a and b and since any number that divides both a and b can be at $\operatorname{most} \max (a, b)>0$, the set of natural numbers that divide both a and b is a finite nonempty set bounded by $\max (a, b)$. Therefore there is a largest such number. This proves the existence of $\operatorname{gcd}(a, b)$. We let $d=\operatorname{gcd}(a, b)$.
Second Part. We proceed by induction on $\max (a, b)$. If $a=1$, then take $x=1, y=0$. If $b=1$, then take $x=0, y=1$. This takes care of the initial step $\max (a, b)$. Assume $\max (a, b)>1$. If $a=b$, then $d=a$ and we may take $x=1, y=0$. Assume $a \neq b$. Without loss of generality, we may assume that $a>b$. Note that the divisors of a and b are the same as the divisors of $a-b$ and b. Hence $\operatorname{gcd}(a-b, b)=\operatorname{gcd}(a, b)=d$. Since $\max (a-b, b)<a=\max (a, b)$, by induction there are two integers x and y^{\prime} such that $x(a-b)+y^{\prime} b=d$, i.e. $x a+\left(y^{\prime}-x\right) b=d$. Take $y=y^{\prime}-x$.
4. Let a and b be two nonzero integers. We say that m is the least common multiple of a and b if m is the least natural number that is divisible by both a and b. We let $m=\operatorname{lcm}(a, b)$. Show that for any $a, b \in \mathbb{Z} \backslash\{0\}$, $\operatorname{lcm}(a, b)$ exists and that $a b= \pm \operatorname{gcd}(a, b) \operatorname{lcm}(a, b)$.

Proof: Replacing a and b by $|a|$ and $|b|$ again, we may assume that $a>0$ and $b>0$. Since a and b both divide $a b, \operatorname{lcm}(a, b)$ exists.
Let $d=\operatorname{gcd}(a, b)$ and $m=\operatorname{lcm}(a, b)$. Let a^{\prime} and b be such that $a=d a^{\prime}$ and $b=d b^{\prime}$. Then $a b=d^{2} a^{\prime} b^{\prime}$. We need to prove that $m=d a^{\prime} b^{\prime}$.
Since $d a^{\prime} b^{\prime}=a b^{\prime}=a^{\prime} b, a$ and b both divide $d a^{\prime} b^{\prime}$.
Let x be divisible by both a and b. Then $x=a u=b v$ for some u, We have $a^{\prime} d u=a u=x=b v=b^{\prime} d v$ and so $a^{\prime} u=b^{\prime} v$. Since a^{\prime} and b^{\prime} cannot have a common divisor (otherwise d would be larger), b^{\prime} must divide u. (This last fact needs a serious proof, that we have not undertaken yet. I shouldn't have asked this question at this stage). Write $u=c b^{\prime}$. Now $x=a u=a c b^{\prime}=a^{\prime} d c b^{\prime}$ and so $a^{\prime} b^{\prime} d$ divides x, in particular $a^{\prime} b^{\prime} d \leq x$. This shows that $a^{\prime} b^{\prime} d$ is the least multiple of a and b, i.e. $a^{\prime} b^{\prime} d=m$.
5. Find formulas for the sums

$$
1^{2}+2^{2}+\ldots+n^{2}
$$

and

$$
1^{3}+2^{3}+\ldots+n^{3}
$$

and prove your result.
Proof: We claim that

$$
1^{2}+2^{2}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

We proceed by induction on n. For $n=1$, it is easy to check the validity of the formula. Assume the statement holds for n. To prove it for $n+1$, we compute:

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} & =\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =\frac{(n+1)(n(2 n+1)+6(n+1))}{6} \\
& =\frac{\left.(n+1)\left(2 n^{2}+7 n+6\right)\right)}{6} \\
& =\frac{(n+1)(n+2)(2 n+3)}{6} \\
& =\frac{n^{\prime}\left(n^{\prime}+1\right)\left(2 n^{\prime}+1\right)}{6}
\end{aligned}
$$

where $n^{\prime}=n+1$. This proves the equality by induction.
We claim that

$$
1^{3}+2^{3}+\ldots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

We proceed by induction on n. For $n=1$, it is easy to check the validity of the formula. Assume the statement holds for n. To prove it for $n+1$, we compute:

$$
\begin{aligned}
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3} & =\frac{n^{2}(n+1)^{2}}{4}+(n+1)^{3} \\
& =\frac{(n+1)^{2}\left(n^{2}+4 n+4\right)}{4} \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} \\
& =\frac{m^{2}(m+1)^{2}}{4}
\end{aligned}
$$

where $m=n+1$. This proves the equality by induction.
6. Recall that a natural number $p \neq 0,1$ is called prime if whenever p divides a product $x y$ of two natural numbers x and y then p divides either x or y. A natural number $p \neq 0,1$ is called irreducible if whenever $p=x y$ for two natural numbers x and y then either x or y is 1 . Show that a natural number is prime if and only if it is irreducible.
Proof: Let p be prime. Assume that $a \mid p$. Then $p=a b$ for some b. It follows that p divides $a b$. Thus p divides either a or b. Assume without loss of generality - that p divides a. Then $p x=a$ some x. Hence $p=a b=p x b$. Since $p \neq 0$, it follows that $x b=1$. Thus $b=1$, and so $a=p$.
Let now p be an irreducible. We will prove that p is a prime. Let p divide $x y$. We will show that p divides either x or y. We proceed by induction on $p+x+y$. Dividing x and y by p we get $x=p q_{1}+x_{1}$ and $y=p q_{2}+y_{1}$ where $x_{1}, y_{1}<p$. Since $x y=\left(p q_{1}+x_{1}\right)\left(p q_{2}+y_{1}\right)=p\left(p q_{1} q_{2}+q_{1} y_{1}+q_{2} x_{1}\right)+x_{1} y_{1}$, thus p divides $x_{1} y_{1}$. Assume $x_{1} y_{1} \neq 0$. Thus $p \leq x_{1} y_{1}<p^{2}$. It follows that $x_{1} y_{1}=r p$ for some $r=1, \ldots, p-1$. If $r=1$, then either $p=x_{1}$ or $p=y_{1}$, a contradiction. Let q be an irreducible dividing r. Thus $q \leq r<p$. By induction q divides either x_{1} or y_{1}, say q divides x_{1}. Write $x_{1}=q x_{2}$ and $r=q r^{\prime}$. We have $q x_{2} y_{1}=x_{1} y_{1}=r p=q r^{\prime} p$ and $x_{2} y_{1}=r^{\prime} p$. By induction p divides either x_{2} or y_{1}, in which case it divides x or y (respectively). Thus we may assume that $x_{1} y_{1}=0$. Hence one of x_{1} or y_{1} is 0 , say $x_{1}=0$. Then $x=p q_{1}+x_{1}=p q_{1}$ and p divides x.

