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You may assume that you know all the basic arithmetic properties of (Z, +,×, 0, 1)
and (N, +,×, 0, 1).

1. Let X = Z× (Z \ {0}). Define the relation ≡ on X by

(x, y) ≡ (z, t) ⇔ xt = yz

for every (x, y), (z, t) ∈ X.

a) Show that this is an equivalence relation on X.

b) Find the equivalence classes of (0, 1) and of (3, 3).

c) Show that if (x, y) ≡ (x′, y′) and (z, t) ≡ (z′, t′) then (xt + yz, yt) ≡
(x′t′ + y′z′, y′t′).

d) Show that if (x, y) ≡ (x′, y′) and (z, t) ≡ (z′, t′) then (xz, yt) ≡ (x′z′, y′t′).

Proof: a. i. Reflexivity. Let (x, y) ∈ X. Then since xy = yx, we have
(x, y) ≡ (x, y).

ii. Symmetry. Let (x, y), (z, t) ∈ X be such that (x, y) ≡ (z, t). Hence
xt = yz. Therefore zy = tx, implying (z, t) ≡ (x, y).

iii. Transitivity. Let (x, y), (z, t), (u, v) ∈ X be such that (x, y) ≡ (z, t)
and (z, t) ≡ (u, v). Hence xt = yz and zv = tu. Multiplying these
equalities side by side, we get xtzv = yztu. Since t 6= 0, by simplifying
we get xzv = yzu. If z 6= 0, then we can simplify further to get xv = yu,
hence (x, y) ≡ (u, v).

Assume z = 0. Then xt = yz = 0 and tu = zv = 0. Since t 6= 0, we get
x = u = 0, so that xv = 0 = yu and (x, y) ≡ (u, v) again.

b. (0, 1) := {(x, y) ∈ X : (x, y) ≡ (0, 1)} = {(x, y) ∈ X : x = 0} =
{(0, y) : y ∈ Z \ {0}}.
(3, 3) := {(x, y) ∈ X : (x, y) ≡ (3, 3)} = {(x, y) ∈ X : 3x = 3y} = {(x, x) :
x ∈ Z \ {0}}.

1



c) Assume (x, y) ≡ (x′, y′) and (z, t) ≡ (z′, t′). Then xy′ = yx′ and
zt′ = tz′. Multiplying the first one by tt′ and the second one by yy′ we
get xy′tt′ = yx′tt′ and zt′yy′ = tz′yy′. Adding these two side by side we
get xy′tt′ + zt′yy′ = yx′tt′ + tz′yy′, and factoring, we get (xt + yz)y′t′ =
yt(x′t′ + y′z′), meaning (xt + yz, yt) ≡ (x′t′ + y′z′, y′t′).

d) Assume (x, y) ≡ (x′, y′) and (z, t) ≡ (z′, t′). Then xy′ = yx′ and
zt′ = tz′. Multiplying these two side by side, we get xy′zt′ = yx′tz′, i.e.
xzy′t′ = ytx′z′, meaning (xz, yt) ≡ (x′z′, y′t′).

2. Find a graph which has only three automorphisms.

Solution. Consider the graph whose points are

{a, a′, a′′, a′′′, b, b′, b′′, b′′′, c, c′, c′′, c′′′}

and whose vertices are

aa′, aa′′, a′′a′′′, bb′, bb′′, b′′b′′′, cc′, cc′′, c′′c′′′, ab, bc, ca, a′b′′, b′c′′, c′a′′.

It works!

3. Let a and b be two integers which are not both 0. We say that d is the
greatest common divisor of a and b if d is the largest natural number
that divides both a and b. Show that for any a, b ∈ Z, gcd(a, b) exists and
that there are x, y ∈ Z such that ax + by = gcd(a, b).

Proof: Replacing a and b by |a| and |b|, we may assume that a ≥ 0 and
b ≥ 0.

Existence. Since 1 divides both a and b and since any number that
divides both a and b can be at most max(a, b) > 0, the set of natural
numbers that divide both a and b is a finite nonempty set bounded by
max(a, b). Therefore there is a largest such number. This proves the
existence of gcd(a, b). We let d = gcd(a, b).

Second Part. We proceed by induction on max(a, b). If a = 1, then take
x = 1, y = 0. If b = 1, then take x = 0, y = 1. This takes care of the
initial step max(a, b). Assume max(a, b) > 1. If a = b, then d = a and
we may take x = 1, y = 0. Assume a 6= b. Without loss of generality, we
may assume that a > b. Note that the divisors of a and b are the same
as the divisors of a − b and b. Hence gcd(a − b, b) = gcd(a, b) = d. Since
max(a − b, b) < a = max(a, b), by induction there are two integers x and
y′ such that x(a− b) + y′b = d, i.e. xa + (y′ − x)b = d. Take y = y′ − x.

4. Let a and b be two nonzero integers. We say that m is the least common
multiple of a and b if m is the least natural number that is divisible by
both a and b. We let m = lcm(a, b). Show that for any a, b ∈ Z \ {0},
lcm(a, b) exists and that ab = ± gcd(a, b) lcm(a, b).
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Proof: Replacing a and b by |a| and |b| again, we may assume that a > 0
and b > 0. Since a and b both divide ab, lcm(a, b) exists.
Let d = gcd(a, b) and m = lcm(a, b). Let a′ and b be such that a = da′

and b = db′. Then ab = d2a′b′. We need to prove that m = da′b′.
Since da′b′ = ab′ = a′b, a and b both divide da′b′.
Let x be divisible by both a and b. Then x = au = bv for some u, v. We
have a′du = au = x = bv = b′dv and so a′u = b′v. Since a′ and b′ cannot
have a common divisor (otherwise d would be larger), b′ must divide u.
(This last fact needs a serious proof, that we have not undertaken yet. I
shouldn’t have asked this question at this stage). Write u = cb′. Now
x = au = acb′ = a′dcb′ and so a′b′d divides x, in particular a′b′d ≤ x.
This shows that a′b′d is the least multiple of a and b, i.e. a′b′d = m.

5. Find formulas for the sums

12 + 22 + . . . + n2

and
13 + 23 + . . . + n3,

and prove your result.
Proof: We claim that

12 + 22 + . . . + n2 =
n(n + 1)(2n + 1)

6
.

We proceed by induction on n. For n = 1, it is easy to check the validity
of the formula. Assume the statement holds for n. To prove it for n + 1,
we compute:

12 + 22 + . . . + n2 + (n + 1)2 = n(n+1)(2n+1)
6 + (n + 1)2

= (n+1)(n(2n+1)+6(n+1))
6

= (n+1)(2n2+7n+6))
6

= (n+1)(n+2)(2n+3)
6

= n′(n′+1)(2n′+1)
6

where n′ = n + 1. This proves the equality by induction.
We claim that

13 + 23 + . . . + n3 =
n2(n + 1)2

4
.

We proceed by induction on n. For n = 1, it is easy to check the validity
of the formula. Assume the statement holds for n. To prove it for n + 1,
we compute:

13 + 23 + . . . + n3 + (n + 1)3 = n2(n+1)2

4 + (n + 1)3

= (n+1)2(n2+4n+4)
4

= (n+1)2(n+2)2

4

= m2(m+1)2

4
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where m = n + 1. This proves the equality by induction.

6. Recall that a natural number p 6= 0, 1 is called prime if whenever p divides
a product xy of two natural numbers x and y then p divides either x or y.
A natural number p 6= 0, 1 is called irreducible if whenever p = xy for
two natural numbers x and y then either x or y is 1. Show that a natural
number is prime if and only if it is irreducible.

Proof: Let p be prime. Assume that a|p. Then p = ab for some b.
It follows that p divides ab. Thus p divides either a or b. Assume –
without loss of generality – that p divides a. Then px = a some x. Hence
p = ab = pxb. Since p 6= 0, it follows that xb = 1. Thus b = 1, and so
a = p.

Let now p be an irreducible. We will prove that p is a prime. Let p divide
xy. We will show that p divides either x or y. We proceed by induction on
p+x+y. Dividing x and y by p we get x = pq1+x1 and y = pq2+y1 where
x1, y1 < p. Since xy = (pq1+x1)(pq2+y1) = p(pq1q2+q1y1+q2x1)+x1y1,
thus p divides x1y1. Assume x1y1 6= 0. Thus p ≤ x1y1 < p2. It follows
that x1y1 = rp for some r = 1, . . . , p − 1. If r = 1, then either p = x1

or p = y1, a contradiction. Let q be an irreducible dividing r. Thus
q ≤ r < p. By induction q divides either x1 or y1, say q divides x1. Write
x1 = qx2 and r = qr′. We have qx2y1 = x1y1 = rp = qr′p and x2y1 = r′p.
By induction p divides either x2 or y1, in which case it divides x or y
(respectively). Thus we may assume that x1y1 = 0. Hence one of x1 or
y1 is 0, say x1 = 0. Then x = pq1 + x1 = pq1 and p divides x. ¤
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