Math 111 Resit

Ali Nesin

January 2004

Important Note. Write either in English or in Turkish, but in any event make full sentences. Use proper punctuation. Do not use symbols such as $\Leftrightarrow, \Rightarrow, \exists, \forall$. For each use of these symbols I will take away 1 pt. Explain all your answers, but grades will be taken away for unnecessary text. Any unexplained answer will get 0 point, whether the answer is correct or not.

I. Transitive Relations. Let X be a set. A binary relation on X is just a subset of $X \times X$.

A binary relation R on X is called **transitive** if, for all $x, y, z \in X$, $(x, y) \in R$ and $(y, z) \in R$ implies $(x, z) \in R$.

i. Which of the following a transitive binary relation on any set X? Explain. (0 or 4 pts.)

i. $X \times X$.

ii. Ø.

iii. $\{(x, x) : x \in X\}.$

iv. $\{(x, y) \in X^2 : x \neq y\}.$

- ii. Which of the following a transitive binary relation on \mathbb{N} ? Explain. (0 or 4 pts.)
 - i. {(x, y) ∈ N² : 5 divides x − y}.
 ii. {(x, y) ∈ N² : 5 divides x + y}.
 iii. {(x, y) ∈ N² : 5 > x − y}.
 iv. {(x, y) ∈ N² : 12 < x − y}.
- iii. Show that the intersection of a set of transitive relations on X is a transitive relation on X. (4 pts.)
- iv. Show that for any binary relation R on X the intersection R^t of all the transitive relations that contain R is the unique smallest transitive relation on X that contains R. (10 pts.)

- v. Show that if R and S are two binary relations then $(R \cap S)^t \subseteq R^t \cap S^t$. (8 pts.)
- vi. Let R be a binary relation. Show that the subset

$$\{S := (x, y) \in X^2 : \exists x = y_1, y_2, \dots, y_n = y \in X \text{ such that}$$

 $(y_i, y_i + 1) \in R \text{ for all } i = 1, \dots, n - 1\}$

is a transitive relation that contains R. Conclude that $R^t = S$. (10 pts.)

vii. Show that in general $(R \cap S)^t \neq R^t \cap S^t$. (5 pts.)

II. Partial Orders. A binary relation < on a set X is called a partial order on X if (writing x < y instead of $(x, y) \in <$),

PO1. Irreflexivity. For every $x \in X$, $x \not< x$.

and

PO2. Transitivity. For every $x, y, z \in X$, if x < y and y < z then x < z.

We write $x \leq y$ if either x < y or x = y.

Let (X, <) be a partially ordered set and $A \subseteq X$. An element $u \in X$ is called an **upper bound** of A if $a \leq u$ for all $a \in A$. An element $v \in X$ is called a **least upper bound** of A if i) v is an upper bound for A and ii) for any upper bound u of A, if $u \leq v$ then u = v.

- i. Give an example of a partially ordered set (X, <) and a subset A of X which
 - i. has a least upper bound which is not in A.
 - ii. has exactly two least upper bounds.
 - iii. does not have a least upper bound.
 - iv. has a least upper bound which is in A. (4 pts.)
- ii. Let (X, <) be a partially ordered set and A a subset of X. Suppose that A has a least upper bound which is in A. Show that this is the only upper bound of A. (2 pts.)
- iii. Let (X, <) be a partially ordered set. Show that any element of X is an upper bound of \emptyset . (2 pts.)
- iv. Let (X, <) be a partially ordered set. What can you say about (X, <) if \emptyset has a least upper bound? (2 pts.)
- v. Let U be a set and let $X = \wp(U)$. Order X by inclusion. Show that this is a partial order on X. (2 pts.) Show that any subset of X has a unique least upper bound. (5 pts.)

- vi. Let (X, <) be a partial order. Suppose that for any $a, b \in X$, the set $\{a, b\}$ has a unique least upper bound. Let $a \lor b$ denote this least upper bound.
 - i. Give an infinite example of such a partially ordered set. (2 pts.)
 - ii. Prove or disprove: $(a \lor b) \lor c = a \lor (b \lor c)$ for all $a, b, c \in X$. (10 pts.)

III. Total Orders. If in addition to PO1 and PO2 stated above,

O3 For every $x, y \in X$, either x < y or x = y or y < x,

then the partial order is called a **total order**.

i. Show that in a totally ordered set (X, <) if a subset A of X has a least upper bound then this least upper bound is the only upper bound of A. (4 pts.)

IV. Well-Ordered Sets. We say that a totally ordered set (X, <) is a **well-ordered set** (or that < well-orders X) if every nonempty subset of X contains a minimal element for that order, i.e. if for every nonempty subset A of X, there is an $m \in A$ such that $m \leq a$ for all a in A. (Note that the element m must be in A).

- i. Give an example of a finite and an infinite well-ordered set. (2 pts.)
- ii. Let $X = \mathbb{N} \times \{0\} \cup \mathbb{N} \times \{1\}$. On X define the relation < as follows: For all $x, y \in \mathbb{N}$,

 $\begin{array}{ll} (x,0) < (y,0) & \text{if and only if} \quad x < y \\ (x,1) < (y,1) & \text{if and only if} \quad x < y \\ (x,0) < (y,1) & \text{always} \end{array}$

i. Is (X, <) a totally ordered set? (2 pts.)

- ii. Is (X, <) a well-ordered set? (2 pts.)
- iii. Is the set $\{1/n : n \in \mathbb{N} \setminus \{0\}\}$ together with the natural order a well-ordered set? (2 pts.)
- iv. Is the set $\{1/n : n \in \mathbb{N} \setminus \{0\}\} \cup \{0\}$ together with the natural order a well-ordered set? (2 pts.)
- v. Find an infinite well-ordered set with a maximal element. (4 pts.)
- vi. Show that in a well-ordered set X, the minimal element of any nonempty subset is unique. (2 pts.)
- vii. Show that every nonempty well-ordered set has a unique minimal element. (2 pts.)

viii. Let (X, <) be a well-ordered set. Show that all the elements of X except possibly one of them satisfies the following property: "There exists a y such that x < y and for all z if x < z then y < z". (5 pts.) Show that such a y, when exists, is unique (3 pts.)