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Important Note. Write either in English or in Turkish, but in any event
make full sentences. Use proper punctuation. Do not use symbols such as
⇔, ⇒, ∃, ∀. For each use of these symbols I will take away 1 pt. Explain
all your answers, but grades will be taken away for unnecessary text. Any
unexplained answer will get 0 point, whether the answer is correct or not.

I. Transitive Relations. Let X be a set. A binary relation on X is just
a subset of X ×X.

A binary relation R on X is called transitive if, for all x, y, z ∈ X, (x, y) ∈
R and (y, z) ∈ R implies (x, z) ∈ R.

i. Which of the following a transitive binary relation on any set X? Explain.
(0 or 4 pts.)

i. X ×X.

ii. ∅.
iii. {(x, x) : x ∈ X}.
iv. {(x, y) ∈ X2 : x 6= y}.

ii. Which of the following a transitive binary relation on N? Explain. (0 or
4 pts.)

i. {(x, y) ∈ N2 : 5 divides x− y}.
ii. {(x, y) ∈ N2 : 5 divides x + y}.
iii. {(x, y) ∈ N2 : 5 > x− y}.
iv. {(x, y) ∈ N2 : 12 < x− y}.

iii. Show that the intersection of a set of transitive relations on X is a tran-
sitive relation on X. (4 pts.)

iv. Show that for any binary relation R on X the intersection Rt of all the
transitive relations that contain R is the unique smallest transitive relation
on X that contains R. (10 pts.)
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v. Show that if R and S are two binary relations then (R ∩ S)t ⊆ Rt ∩ St.
(8 pts.)

vi. Let R be a binary relation. Show that the subset

{S := (x, y) ∈ X2 : ∃x = y1, y2, . . . , yn = y ∈ X such that

(yi, yi + 1) ∈ R for all i = 1, . . . , n− 1}

is a transitive relation that contains R. Conclude that Rt = S. (10 pts.)

vii. Show that in general (R ∩ S)t 6= Rt ∩ St. (5 pts.)

II. Partial Orders. A binary relation < on a set X is called a partial
order on X if (writing x < y instead of (x, y) ∈<),

PO1. Irreflexivity. For every x ∈ X, x 6< x.

and

PO2. Transitivity. For every x, y, z ∈ X, if x < y and y < z then x < z.

We write x ≤ y if either x < y or x = y.
Let (X, <) be a partially ordered set and A ⊆ X. An element u ∈ X is

called an upper bound of A if a ≤ u for all a ∈ A. An element v ∈ X is called
a least upper bound of A if i) v is an upper bound for A and ii) for any upper
bound u of A, if u ≤ v then u = v.

i. Give an example of a partially ordered set (X,<) and a subset A of X
which

i. has a least upper bound which is not in A.

ii. has exactly two least upper bounds.

iii. does not have a least upper bound.

iv. has a least upper bound which is in A. (4 pts.)

ii. Let (X, <) be a partially ordered set and A a subset of X. Suppose that
A has a least upper bound which is in A. Show that this is the only upper
bound of A. (2 pts.)

iii. Let (X, <) be a partially ordered set. Show that any element of X is an
upper bound of ∅. (2 pts.)

iv. Let (X, <) be a partially ordered set. What can you say about (X, <) if
∅ has a least upper bound? (2 pts.)

v. Let U be a set and let X = ℘(U). Order X by inclusion. Show that this
is a partial order on X. (2 pts.) Show that any subset of X has a unique
least upper bound. (5 pts.)
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vi. Let (X, <) be a partial order. Suppose that for any a, b ∈ X, the set
{a, b} has a unique least upper bound. Let a ∨ b denote this least upper
bound.

i. Give an infinite example of such a partially ordered set. (2 pts.)

ii. Prove or disprove: (a ∨ b) ∨ c = a ∨ (b ∨ c) for all a, b, c ∈ X. (10 pts.)

III. Total Orders. If in addition to PO1 and PO2 stated above,

O3 For every x, y ∈ X, either x < y or x = y or y < x,

then the partial order is called a total order.

i. Show that in a totally ordered set (X, <) if a subset A of X has a least
upper bound then this least upper bound is the only upper bound of A.
(4 pts.)

IV. Well-Ordered Sets. We say that a totally ordered set (X, <) is a
well-ordered set (or that < well-orders X) if every nonempty subset of X
contains a minimal element for that order, i.e. if for every nonempty subset A
of X, there is an m ∈ A such that m ≤ a for all a in A. (Note that the element
m must be in A).

i. Give an example of a finite and an infinite well-ordered set. (2 pts.)

ii. Let X = N × {0} ∪ N × {1}. On X define the relation < as follows: For
all x, y ∈ N,

(x, 0) < (y, 0) if and only if x < y
(x, 1) < (y, 1) if and only if x < y
(x, 0) < (y, 1) always

i. Is (X, <) a totally ordered set? (2 pts.)

ii. Is (X,<) a well-ordered set? (2 pts.)

iii. Is the set {1/n : n ∈ N\{0}} together with the natural order a well-ordered
set? (2 pts.)

iv. Is the set {1/n : n ∈ N \ {0}} ∪ {0} together with the natural order a
well-ordered set? (2 pts.)

v. Find an infinite well-ordered set with a maximal element. (4 pts.)

vi. Show that in a well-ordered set X, the minimal element of any nonempty
subset is unique. (2 pts.)

vii. Show that every nonempty well-ordered set has a unique minimal element.
(2 pts.)
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viii. Let (X, <) be a well-ordered set. Show that all the elements of X except
possibly one of them satisfies the following property: “There exists a y
such that x < y and for all z if x < z then y < z”. (5 pts.) Show that
such a y, when exists, is unique (3 pts.)
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