Set Theory (Math 112) First Midterm

Spring 2003
Ali Nesin

June 8, 2003

Let X be a set. A filter on X is a set Im of subsets of X that satisfies the following properties:
i) If $A \in \operatorname{Im}$ and $A \subseteq B \subseteq X$, then $B \in \operatorname{Im}$.
ii) If A and B are in Im, then so is $A \cap B$.
iii) $\emptyset \notin \operatorname{Im}$ and $X \in \operatorname{Im}$.

If $A \subseteq X$ is a fixed nonempty subset of X, then the set of subsets $\operatorname{Im}(A)$ of X that contain A is a filter on X. Such a filter is called principal filter. If X is infinite, then the set of cofinite subsets of X is a filter, called Fréchet filter. A filter is called ultrafilter if it is a maximal filter.

We fix a set X.

1. Show that a principle filter $\operatorname{Im}(A)$ on X is an ultrafilter if and only if A is a singleton set.
2. Show that the Fréchet filter (on an infinite set) is not contained in a principal filter.
3. Show that the intersection of a set of filters is a filter.
4. Show that if Im is a set of subsets of X such that $A_{1} \cap A_{2} \cap \ldots \cap A_{n} \neq \emptyset$ for any $A_{1}, A_{2}, \ldots, A_{n} \in \operatorname{Im}$, then there is a filter that contains Im. Describe this filter in terms of Im.
5. Show that a filter Im is an ultrafilter if and only if for any $A \subseteq X$, either A or A^{c} is in Im.
6. Conclude that any ultrafilter on X that contains a finite subset of X is a principal filter. Deduce that every nonprincipal ultrafilter contains the Fréchet filter.
7. (AC) Show that for any filter Im on X, there is an ultrafilter on X that contains Im.
8. (AC) Show that if X is infinite then there are nonprincipal ultrafilters on X.
9. Let Im be a filter on X. Let $A_{x}(x \in X)$ be sets. Consider the product

$$
\begin{aligned}
\prod_{x \in X} A_{x} & :=\left\{f=\left(f_{x}\right)_{x \in X}: f_{x} \in A_{x} \text { for all } x \in X\right\} \\
& =\left\{f: X \longrightarrow \prod_{x \in X} A_{x}: f(x) \in A_{x} \text { for all } x \in X\right\}
\end{aligned}
$$

On the set $\prod_{x \in X A_{x}}$ consider the relation defined by

$$
f \equiv g \Longleftrightarrow\{x \in X: f(x)=g(x)\} \in \operatorname{Im}
$$

Show that this is an equivalence relation.
10. Show that if $A_{x}=A$ for all $x \in X$ and if Im is nonprincipal filter then the map that sends an element $a \in A$ to the class of the constant function a is an injection from A into M.
11. Suppose that each A_{x} is a set ordered by a relation $<$. On M define the relation $<$ by,

$$
\left[\left(f_{x}\right)_{x \in X}\right]<\left[\left(g_{x}\right)_{x \in X} \Longleftrightarrow\left\{x \in X: f_{x}<g_{x}\right\} \in \operatorname{Im}\right.
$$

Show that this defines an order on M.
12. Show that if Im is an ultrafilter and if each $\left(A_{x},<\right)$ is totally ordered then so is $(M,<)$.
13. Suppose that each $\left(A_{x},<\right)$ has a largest element. Is it true that $(M,<)$ has a largest element?
14. Suppose that each $\left(A_{x},<\right)$ is well-ordered. Is it true that $(M,<)$ is wellordered?

