1. Let G be any abelian group. Show that any finite dimensional irreducible representation of G over an algebraically closed field is one dimensional.

Let K be the field and V be the irreducible module. $\dim_K(V) \leq |G| - 1 < \infty$. Let $g \in G$. Since K is algebraically closed, g has an eigenvalue, say λ. Let V_λ be the eigenspace of g. Then for all $h \in G$ and $v \in V_\lambda$, $g(hv) = (gh)v = (hg)v = h(gv) = h(\lambda v) = \lambda(hv)$ and so $hv \in V_\lambda$. Therefore V_λ is a G-space and so $V_\lambda = V$. Being true for all $g \in G$, every element of G acts as a scalar on V. Therefore V is one dimensional.

2. Let M be an R-module.
 a) Show that $\text{End}_R(M)$ is naturally a ring. [4 pts.]
 b) Show that M is also an $\text{End}_R(M)$-module. [3 pts.]
 c) Assume that $rM = 0$ implies $r = 0$ (i.e. that $\text{Ann}_R(M) = 0$). Show that $R \leq \text{End}_{\text{End}_R(M)}(M)$. [3 pts.]

 Answer: a) $\text{End}_R(M)$ is a ring under addition and composition. This is easy to check.
 b) This is also clear.
 c) By definition $\text{End}_R(M)$ are the additive maps that commute with R-multiplications, so the R-multiplications commute with $\text{End}_R(M)$ as well. The condition “$rM = 0 \Rightarrow r = 0$” just tells that R imbeds in $\text{End}_{\text{End}_R(M)}(M)$.

3. (Schur’s Lemma)
 a) Let M and M_1 be two irreducible R-modules. Let $\phi : M \longrightarrow M_1$ be a module homomorphism. Show that either ϕ is the zero map or an isomorphism. (6 pts.)
 b) Let M be an irreducible R-module. Show that $\text{End}_R(M)$ is a division ring. (4 pts.)
Let \(G \) be a finite group and \(V \) an irreducible \(K[G] \)-module. Assume \(K \) is algebraically closed. Show that \(\text{End}_{K[G]}(V) \cong K \). (10 pts.)

Let \(\phi \in \text{End}_{K[G]}(V) \). Since \(G \) is finite, \(V \) is finite dimensional (of dimension at most \(|G| - 1\)). Therefore \(\phi \) has an eigenvalue, say \(\lambda \). Let

\[
V_{\lambda} = \{ v \in V : \phi(v) = \lambda v \}.
\]

For \(g \in G \) and \(v \in V_{\lambda} \), \(\phi(gv) = g\phi(v) = g(\lambda v) = \lambda(gv) \) and therefore \(gv \in V_{\lambda} \). It follows that \(V_{\lambda} \) is a \(G \)-space and so \(V = V_{\lambda} \). Hence \(\phi = \lambda \text{Id}_V \).

The same proof works if \(G \) is not necessarily finite but with the additional assumption that \(\dim_K(V) < \infty \). On the other hand if \(\dim_K(V) \) is infinite, this does not hold anymore: Take \(G = \mathbb{Z} = \langle x \rangle \), \(V = \sum_{n \in \mathbb{Z}} Kx^n \) and let \(xv_i = v_{i+1} \). Then \(V \) is an irreducible \(\mathbb{Z} \)-space as it can be checked easily.

5. Find all irreducible representations of \((\mathbb{Z}/2\mathbb{Z})^n\) over any field. (60 pts.)

As we know, any irreducible \(G \)-module is a quotient of \(K[G] \) by a maximal left ideal. Let \(G = (\mathbb{Z}/2\mathbb{Z})^n \). Since

\[
K[G] \cong K[X_1, \ldots, X_n]/\langle X_1^2 - 1, \ldots, X_n^2 - 1 \rangle,
\]

any irreducible \(G \)-module is isomorphic to \(K[X_1, \ldots, X_n]/M \) for some maximal ideal \(M \) of \(K[X_1, \ldots, X_n]/\langle X_1^2 - 1, \ldots, X_n^2 - 1 \rangle \). Since \((X_i - 1)(X_i + 1) = X_i^2 - 1 \in \langle X_1^2 - 1, \ldots, X_n^2 - 1 \rangle \leq M \) and \(M \) is a maximal ideal (so that \(K[X_1, \ldots, X_n]/M \) is a field, hence \(M \) is a prime ideal), either \(X_i - 1 \) or \(X_i + 1 \) is in \(M \), say \(X_i - \epsilon_i \in M \), \(\epsilon_i = \pm 1 \). Thus \(K[X_1, \ldots, X_n]/M \cong K \) and \(X_i(1) = \epsilon_i \).

Therefore all irreducible representations of \((\mathbb{Z}/2\mathbb{Z})^n\) over a field \(K \) are one-dimensional. They are given by a subset \(A \) of \(\{1, \ldots, n\} \) by the rule \(\phi_A(X_i)(1) = -1 \) if and only if \(i \in A \). It is easy to check that these representations are inequivalent if \(\text{char}(K) \neq 2 \). Thus there are exactly \(2^n \) inequivalent representations of \((\mathbb{Z}/2\mathbb{Z})^n\) if \(\text{char}(K) \neq 2 \) and there is only one representation (the trivial one) if \(\text{char}(K) = 2 \). They all have dimension 1.