Algebra (Math 212) Final

June 9th, 2004
Ali Nesin
June 23, 2004

1. Let G be any abelian group. Show that any finite dimensional irreducible representation of G over an algebraically closed field is one dimensional. [10 pts.]
Let K be the field and V be the irreducible module. $\operatorname{dim}_{K}(V) \leq|G|-1<$ ∞. Let $g \in G$. Since K is algebraically closed, g has an eigenvalue, say λ. Let V_{λ} be the eigenspace of g. Then for all $h \in G$ and $v \in V_{\lambda}$, $g(h v)=(g h) v=(h g) v=h(g v)=h(\lambda v)=\lambda(h v)$ and so $h v \in V_{\lambda}$. Therefore V_{λ} is a G-space and so $V_{\lambda}=V$. Being true for all $g \in G$, every element of G acts as a scalar on V. therefore V is one dimensional.
2. Let M be an R-module.
a) Show that $\operatorname{End}_{R}(M)$ is naturally a ring. [4 pts.]
b) Show that M is also an $\operatorname{End}_{R}(M)$-module. [3 pts.]
c) Assume that $r M=0$ implies $r=0$ (i.e. that $\operatorname{Ann}_{R}(M)=0$. Show that $R \leq \operatorname{End}_{\operatorname{End}_{R}(M)}(M)$. [3 pts.]

Answer: a) $\operatorname{End}_{R}(M)$ is a ring under addition and composition. This is easy to check.
b) This is also clear.
c) By definition $\operatorname{End}_{R}(M)$ are the additive maps that commute with R-multiplications, so the R-multiplications commute with $\operatorname{End}_{R}(M)$ as well. The condition " $r M=0 \Rightarrow r=0$ " just tells that R imbeds in $\operatorname{End}_{E_{E n d}^{R}}(M)(M)$.
3. (Schur's Lemma)
a) Let M and M_{1} be two irreducible R-modules. Let $\phi: M \longrightarrow M_{1}$ be a module homomorphism. Show that either ϕ is the zero map or an isomorphism. (6 pts .)
b) Let M be an irreducible R-module. Show that $\operatorname{End}_{R}(M)$ is a division ring. (4 pts.)

Answer: a) $\phi(M)$ is a a submodule of M_{1}. Therefore either $\phi(M)=0$ or $\phi(M)=M_{1}$. In the first case $\phi=0$. In the second case ϕ is onto.
$\operatorname{Ker}(\phi)$ is a submodule of M. Therefore either $\operatorname{Ker}(\phi)=0$ or $\operatorname{Ker}(\phi)=M$. In the first case ϕ is one to one. In the second case $\phi=0$.
The result follows from these.
b) The fact that $\operatorname{End}_{R}(M)$ is a ring was part I. It follows from part a that each ϕ is either 0 or an isomorphism. The inverse map of an isomorphism is also an isomorphism.
4. Let G be a finite group and V an irreducible $K[G]$-module. Assume K is algebraically closed. Show that $\operatorname{End}_{K[G]}(V) \simeq K$. (10 pts.)
Let $\phi \in \operatorname{End}_{K[G]}(V)$. Since G is finite, V is finite dimensional (of dimension at most $|G|-1$). Therefore ϕ has an eigenvalue, say λ. Let

$$
V_{\lambda}=\{v \in V: \phi(v)=\lambda v\}
$$

For $g \in G$ and $v \in V_{\lambda}, \phi(g v)=g \phi(v)=g(\lambda v)=\lambda(g v)$ and therefore $g v \in V_{\lambda}$. It follows that V_{λ} is a G-space and so $V=V_{\lambda}$. Hence $\phi=\lambda \operatorname{Id}_{V}$. The same proof works if G is not necessarily finite but with the additional assumption that $\operatorname{dim}_{K}(V)<\infty$. On the other hand if $\operatorname{dim}_{K}(V)$ is infinite, this does not hold anymore: Take $G=\mathbb{Z}=\langle x\rangle, V=\sum_{i \in \mathbb{Z}} K v_{i}$ and let $x v_{i}=v_{i+1}$. Then V is an irreducible \mathbb{Z}-space as it can be checked easily.
5. Find all irreducible representations of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ over any field. (60 pts .)

As we know, any irreducible G-module is a quotient of $K[G]$ by a maximal left ideal. Let $G=(\mathbb{Z} / 2 \mathbb{Z})^{n}$. Since

$$
K[G] \simeq K\left[X_{1}, \ldots, X_{n}\right] /\left\langle X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right\rangle
$$

any irreducible G-module is isomorphic to $K\left[X_{1}, \ldots, X_{n}\right] / M$ for some maximal ideal M of $K\left[X_{1}, \ldots, X_{n}\right] / M$ containing $\left\langle X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right\rangle$. Since $\left(X_{i}-1\right)\left(X_{i}+1\right)=X_{i}^{2}-1 \in\left\langle X_{1}^{2}-1, \ldots, X_{n}^{2}-1\right\rangle \leq M$ and M is a maximal ideal (so that $K\left[X_{1}, \ldots, X_{n}\right] / M$ is a field, hence M is a prime ideal), either $X_{i}-1$ or $X_{i}+1$ is in M, say $X_{i}-\epsilon_{i} \in M,\left(\epsilon_{i}= \pm 1\right)$. Thus $K\left[X_{1}, \ldots, X_{n}\right] / M \simeq K$ and $X_{i}(1)=\epsilon_{i}$.
Therefore all irreducible representations of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ over a field K are one-dimensional. They are given by a subset A of $\{1, \ldots, n\}$ by the rule $\phi_{A}\left(X_{i}\right)(1)=-1$ if and only if $i \in A$. It is easy to check that these representations are inequivalent if $\operatorname{char}(K) \neq 2$. Thus there are exactly 2^{n} inequivalent representations of $(\mathbb{Z} / 2 \mathbb{Z})^{n}$ if $\operatorname{char}(K) \neq 2$ and there is only one representation (the trivial one) if $\operatorname{char}(K)=2$. They all have dimension 1.

