Algebra (Math 212) Final

June 9th, 2004 Ali Nesin

June 23, 2004

1. Let G be any abelian group. Show that any finite dimensional irreducible representation of G over an algebraically closed field is one dimensional. [10 pts.]

Let K be the field and V be the irreducible module. $\dim_K(V) \leq |G| - 1 < \infty$. Let $g \in G$. Since K is algebraically closed, g has an eigenvalue, say λ . Let V_{λ} be the eigenspace of g. Then for all $h \in G$ and $v \in V_{\lambda}$, $g(hv) = (gh)v = (hg)v = h(gv) = h(\lambda v) = \lambda(hv)$ and so $hv \in V_{\lambda}$. Therefore V_{λ} is a G-space and so $V_{\lambda} = V$. Being true for all $g \in G$, every element of G acts as a scalar on V. therefore V is one dimensional.

2. Let M be an R-module.

a) Show that $\operatorname{End}_R(M)$ is naturally a ring. [4 pts.]

b) Show that M is also an $\operatorname{End}_R(M)$ -module. [3 pts.]

c) Assume that rM = 0 implies r = 0 (i.e. that $\operatorname{Ann}_R(M) = 0$. Show that $R \leq \operatorname{End}_{\operatorname{End}_R(M)}(M)$. [3 pts.]

Answer: a) $\operatorname{End}_R(M)$ is a ring under addition and composition. This is easy to check.

b) This is also clear.

c) By definition $\operatorname{End}_R(M)$ are the additive maps that commute with R-multiplications, so the R-multiplications commute with $\operatorname{End}_R(M)$ as well. The condition " $rM = 0 \Rightarrow r = 0$ " just tells that R imbeds in $\operatorname{End}_{\operatorname{End}_R(M)}(M)$.

3. (Schur's Lemma)

a) Let M and M_1 be two irreducible R-modules. Let $\phi : M \longrightarrow M_1$ be a module homomorphism. Show that either ϕ is the zero map or an isomorphism. (6 pts.)

b) Let M be an irreducible R-module. Show that $\operatorname{End}_R(M)$ is a division ring. (4 pts.)

Answer: a) $\phi(M)$ is a submodule of M_1 . Therefore either $\phi(M) = 0$ or $\phi(M) = M_1$. In the first case $\phi = 0$. In the second case ϕ is onto.

 $\operatorname{Ker}(\phi)$ is a submodule of M. Therefore either $\operatorname{Ker}(\phi) = 0$ or $\operatorname{Ker}(\phi) = M$. In the first case ϕ is one to one. In the second case $\phi = 0$.

The result follows from these.

b) The fact that $\operatorname{End}_R(M)$ is a ring was part I. It follows from part a that each ϕ is either 0 or an isomorphism. The inverse map of an isomorphism is also an isomorphism.

4. Let G be a finite group and V an irreducible K[G]-module. Assume K is algebraically closed. Show that $\operatorname{End}_{K[G]}(V) \simeq K$. (10 pts.)

Let $\phi \in \operatorname{End}_{K[G]}(V)$. Since G is finite, V is finite dimensional (of dimension at most |G| - 1). Therefore ϕ has an eigenvalue, say λ . Let

$$V_{\lambda} = \{ v \in V : \phi(v) = \lambda v \}$$

For $g \in G$ and $v \in V_{\lambda}$, $\phi(gv) = g\phi(v) = g(\lambda v) = \lambda(gv)$ and therefore $gv \in V_{\lambda}$. It follows that V_{λ} is a G-space and so $V = V_{\lambda}$. Hence $\phi = \lambda \operatorname{Id}_V$.

The same proof works if G is not necessarily finite but with the additional assumption that $\dim_K(V) < \infty$. On the other hand if $\dim_K(V)$ is infinite, this does not hold anymore: Take $G = \mathbb{Z} = \langle x \rangle$, $V = \sum_{i \in \mathbb{Z}} Kv_i$ and let $xv_i = v_{i+1}$. Then V is an irreducible \mathbb{Z} -space as it can be checked easily.

5. Find all irreducible representations of $(\mathbb{Z}/2\mathbb{Z})^n$ over any field. (60 pts.)

As we know, any irreducible G-module is a quotient of K[G] by a maximal left ideal. Let $G = (\mathbb{Z}/2\mathbb{Z})^n$. Since

$$K[G] \simeq K[X_1, \dots, X_n] / \langle X_1^2 - 1, \dots, X_n^2 - 1 \rangle,$$

any irreducible *G*-module is isomorphic to $K[X_1, \ldots, X_n]/M$ for some maximal ideal *M* of $K[X_1, \ldots, X_n]/M$ containing $\langle X_1^2 - 1, \ldots, X_n^2 - 1 \rangle$. Since $(X_i - 1)(X_i + 1) = X_i^2 - 1 \in \langle X_1^2 - 1, \ldots, X_n^2 - 1 \rangle \leq M$ and *M* is a maximal ideal (so that $K[X_1, \ldots, X_n]/M$ is a field, hence *M* is a prime ideal), either $X_i - 1$ or $X_i + 1$ is in *M*, say $X_i - \epsilon_i \in M$, $(\epsilon_i = \pm 1)$. Thus $K[X_1, \ldots, X_n]/M \simeq K$ and $X_i(1) = \epsilon_i$.

Therefore all irreducible representations of $(\mathbb{Z}/2\mathbb{Z})^n$ over a field K are one-dimensional. They are given by a subset A of $\{1, \ldots, n\}$ by the rule $\phi_A(X_i)(1) = -1$ if and only if $i \in A$. It is easy to check that these representations are inequivalent if $\operatorname{char}(K) \neq 2$. Thus there are exactly 2^n inequivalent representations of $(\mathbb{Z}/2\mathbb{Z})^n$ if $\operatorname{char}(K) \neq 2$ and there is only one representation (the trivial one) if $\operatorname{char}(K) = 2$. They all have dimension 1.