Math 111

Ali Nesin

November 13, 2003
i. Show that for all $x, y \in \omega$, if $x \in y$ then $x \subseteq y$.
ii. Show that for all $x \in \omega$, either $\emptyset \in x$ or $x=\emptyset$.
iii. Show that for all $x \in \omega, x \notin x$.
iv. Show that for all $x, y \in \omega$, if $y \in x$ then either $S(y) \in x$ or $S(y)=x$.
v. Show that if $x, y, z \in \omega$ are such that $x \in y$ and $y \in z$ then $x \in z$.
vi. Show that any nonempty subset of ω has a least element (for ϵ).
vii. Show that if $x \in \omega$ then $x \subseteq \omega$.

