Set Theory

Midterm May 2003 Ali Nesin

Let X be a set. A **filter** on X is a set \mathfrak{I} of subsets of X that satisfies the following properties:

- i) If $A \in \mathfrak{J}$ and $A \subseteq B \subseteq X$, then $B \in \mathfrak{J}$.
- ii) If A and B are in \Im , then so is $A \cap B$.
- iii) $\emptyset \notin \mathfrak{J}$ and $X \in \mathfrak{J}$.

If $A \subseteq X$ is a fixed nonempty subset of X, then the set of subsets $\mathfrak{I}(A)$ of X that contain A is a filter on X. Such a filter is called **principal filter**.

If X is infinite, then the set of cofinite subsets of X is a filter, called **Fréchet filter**.

A filter is called **ultrafilter** if it is a maximal filter.

We fix a set *X*.

- 1. Show that a principle filter $\Im(A)$ on X is an ultrafilter iff A is a singleton set.
- 2. Show that the Fréchet filter (on an infinite set) is not principal.
- 3. Show that the intersection of a set of filters is a filter.
- 4. Show that if \Im is a set of subsets of X such that $A_1 \cap A_2 \cap ... \cap A_n \neq \emptyset$ for any $A_1, A_2, ..., A_n \in \Im$, then there is a filter that contains \Im . Describe this filter in terms of \Im .
- 5. Show that a filter \Im is an ultrafilter if and only if for any $A \subseteq X$, either A or A^c is in \Im .
- 6. Conclude that any ultrafilter on X that contains a finite subset of X is a principal filter. Deduce that every nonprinciple ultrafilter contains the Fréchet filter.
- 7. (AC) Show that for any filter $\mathfrak I$ on X, there is an ultrafilter on X that contains $\mathfrak I$.
 - 8. (AC) Show that if X is infinite then there are nonprincipal ultrafilters on X.
 - 9. Let \Im be a filter on X. Let A_x ($x \in X$) be sets. Consider the product

$$\Pi_{x \in X} A_x := \{ f = (f_x)_{x \in X} : f_x \in A_x \text{ for all } x \in X \} = \{ f : X \to \bigcup_{x \in X} A_x : f(x) \in A_x \}.$$

On $\Pi_{x \in X} A_x$ consider the relation \equiv defined by

$$f \equiv g \Leftrightarrow \{x \in X : f(x) = g(x)\} \in \mathfrak{J}.$$

Show that this is an equivalence relation. From now on we fix a filter \Im on X and we let $M = \prod_{x \in X} A_x / \equiv$. If $f \in \prod_{x \in X} A_x$, we let [f] denote the class of f in M.

- 10. Show that if $A_x = A$ for all $x \in X$ and if \Im is nonprincipal filter then the map that sends an element $a \in A$ to the class of the constant function a is an injection from A into M.
- 11. Suppose that each A_x is a set ordered by a relation <. On M define the relation < by,

$$[(f_x)_{x \in X}] < [(g_x)_{x \in X}] \Leftrightarrow \{x \in X : f_x < g_x\} \in \mathfrak{I}.$$

Show that this defines an order on M.

- 12. Show that if \Im is an ultrafilter and each $(A_x, <)$ is totally ordered then so is (M, <).
- 13. Suppose that each $(A_x, <)$ has a largest element. Is it true that (M, <) has a largest element?
- 14. Suppose that each $(A_x, <)$ is well-ordered. Is it true that (M, <) is well-ordered?