Math 111. Set Theory Resit - Solutions

Ali Nesin

March 17, 2003

Let X be a set. A set of subsets of X - whose elements are called open subsets of X - is called a topology on X, if

T1. \emptyset and X are open subsets of X.
T2. The intersection of two open subsets of X is an open subset of X.
T3. The union of any collection of open subsets of X is an open subset of X.

More formally, a subset τ of $\wp(X)$ is called a topology on X, if
T1. $\emptyset \in \tau$ and $X \in \tau$.
T2. If $U, V \in \tau$, then $U \cap V \in \tau$.
T2. If $\sigma \subseteq \tau$, then $\cup \sigma \in \tau$.
i. Show that $\{\emptyset, X\}$ is a topology on X. (2 pts.)

Answer. We must check that the set $\{\emptyset, X\}$ satisfies T1, T2 and T3. T 1 is clear. T2 and T3, in this context, just mean that the set $\{\emptyset, X\}$ is closed under intersection and union. This is clear as well.
ii. Show that $\wp(X)$ is a topology on X. (2 pts.)

Answer. Clearly $\emptyset, X \in \wp(X)$. T2 and T3 are clear as well.
iii. Let A be a subset of X. Show that $\{\emptyset, A, X\}$ is a topology on X. (2 pts.)

Answer. Clear.
iv. Let A and B be two subsets of X . Find a finite topology on X that contains A and B. (3 pts.)
v. Let A, B and C be three subsets of X . Find a finite topology on X that contains A and B. What is the maximum size of the smallest such topology? (4 pts.)
vi. Let τ be a topology on X. Let $A \subseteq X$. Show that there is a unique largest open subset of A. We denote this subset by A°. (6 pts .)
Show that for all subsets A and B of X,
a) If $A \subseteq B$ then $A^{\circ} \subseteq B^{\circ}$. (4 pts.)
b) $(A \cap B)^{\circ} \subseteq A^{\circ} \cap B^{\circ}$. (5 pts.)
c) $(A \cup B)^{\circ}=A^{\circ} \cup B^{\circ}$. $(7 \mathrm{pts}$.
vii. Show that if σ and τ are topologies on X, then $\sigma \cap \tau$ is also a topology on X. (5 pts.)
viii. Show that if T is any set of topologies on X, then $\cap T$ is also a topology on X. (3 pts.)
ix. Show that if $\sigma \subseteq \wp(X)$ is a set of subsets of X, then the intersection $\langle\sigma\rangle$ of all the topologies that contain σ is the smallest topology on X that contains σ. In other words, if $A \in \sigma$ then A is open in the topology $\langle\sigma\rangle$, and $\langle\sigma\rangle$ is the smallest topology on X with this property. This topology is called the topology generated by σ. (10 pts.)
x. Let σ be the set of singleton subsets of X. Find $\langle\sigma\rangle$. (3 pts.)
xi. Let $n \in \mathbb{N}$. Let σ be the set of subsets of X of cardinality n. Find $\langle\sigma\rangle$. (5 pts.)
xii. Assume σ is the set of cofinite subsets of X. Find $\langle\sigma\rangle$. (4 pts.)
xiii. Let $\sigma \subseteq \wp(X)$. Consider the set $[\sigma]$ of subsets A of X with the following property:

For any $x \in A$ there are finitely many $S_{1}, \ldots, S_{n} \in \sigma$ such that

$$
x \in S_{1} \cap \ldots \cap S_{n} \subseteq U
$$

a) Show that $[\sigma]$ is a topology on X. (5 pts.$)$
b) Show that $\langle\sigma\rangle \subseteq[\sigma]$. (5 pts.)
c) Show that $\langle\sigma\rangle=[\sigma]$. (5 pts.)

Thus $U \in\langle\sigma\rangle$ if and only if for all $x \in\langle\sigma\rangle$ there are finitely many $S_{1}, \ldots, S_{n} \in \sigma$ such that $x \in S_{1} \cap \ldots \cap S_{n} \subseteq U$. (15 pts.)
xiv. Let σ be the set of all open intervals of \mathbb{R}. Consider the set \mathbb{R} with the topology $\langle\sigma\rangle$.
a) Show that a subset A of \mathbb{R} is open (in this topology) if and only if for all $a \in A$ there is an $\epsilon \in \mathbb{R}^{>0}$ such that $(a-\epsilon, a+\epsilon) \subseteq A$. (7 pts.)
b) Show that no finite and nonempty subset of \mathbb{R} is open (in this topology). (2 pts.)
c) Show that $[0,1)$ is not open. (3 pts.)
d) Show that a cofinite subset is open. (3 pts .)
d) Is \mathbb{Q} open? (3 pts.)
xv. Let σ_{1} be the set of all intervals of \mathbb{R} of the form $[a, b)$ of \mathbb{R} for $a \leq b \in \mathbb{R}$.
a. Show that $\langle\sigma\rangle \subset\left\langle\sigma_{1}\right\rangle$. (5 pts.)
b. Can a singleton set be open in this topology? (3 pts .)
c. Show that $[0,1]$ is not open in this topology. (3 pts.)
xvi. Let σ_{2} be the set of all closed and bounded intervals of \mathbb{R}. Show that $\left\langle\sigma_{1}\right\rangle \subset\left\langle\sigma_{2}\right\rangle$ where σ_{1} is as in number ??. (5 pts.)

