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1. a) Given a set X, define ∪X as follows:

y ∈ ∪X if and only if there is an x ∈ X such that y ∈ x.

Show that ∪∅ = ∅. (3 pts.)

Proof: Set X = ∅ in the definition. Thus

y ∈ ∪∅ if and only if there is an x ∈ ∅ such that y ∈ x.

Since there is no x ∈ ∅, we see that ∪∅ = ∅.

b) Given a set X, define ∩1X and ∩2X as follows:

y ∈ ∩1X if and only if y ∈ x for all x ∈ X
y ∈ ∩2X if and only if y ∈ ∪X and y ∈ x for all x ∈ X

Is ∩1X = ∩2X for all X? Which definition do you prefer for ∩X and
why? (5 pts.)

Answer: Certainly ∩2X ⊆ ∩1X because ∩2X = (∩1X) ∩ (∪X) by defi-
nition.

The reverse inclusion holds only if X 6= ∅. Indeed, assume X 6= ∅ and let
y ∈ ∩1X. To show that y ∈ ∩2X, we need to show that y ∈ ∪X, i.e. that
y ∈ x for some x ∈ X. Since X 6= ∅ and y ∈ ∩1X, this holds trivially, i.e.
y ∈ x for some x ∈ X.

The reverse inclusion does not hold if X = ∅. Indeed, ∩2∅ = (∩1∅)∩(∪∅) =
(∩1∅) ∩ ∅ = ∅. On the other hand,

y ∈ ∩1∅ if and only if y ∈ x for all x ∈ ∅
and this condition holds for all y. Hence ∩1∅ is the whole universe and is
not even a set.
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Thus we should prefer ∩2X for the definition of ∩X since the outcome
would then be a set for any set X, even for X = ∅!

2. Find a set X such that X ∩ ℘(X) 6= ∅. (3 pts.)

Answer. Since ∅ ∈ ℘(X) for any X, any set X that contains ∅ as element
would do, e.g. we may take X = {∅}.

3. Let (Ai)i∈I be a family of sets.

a) Show that
⋂

i∈I ℘(Ai) = ℘(
⋂

i∈I Ai). (3 pts.)

Proof:

X ∈ ⋂
i∈I ℘(Ai) if and only if X ∈ ℘(Ai) for all i ∈ I

if and only if X ⊆ Ai for all i ∈ I
if and only if X ⊆ ⋂

i∈I Ai

if and only if X ∈ ℘(
⋂

i∈I Ai)

b) What is the relationship between
⋃

i∈I ℘(Ai) and ℘(
⋃

i∈I Ai)? (4 pts.)

Answer: We have
⋃

i∈I ℘(Ai) ⊆ ℘(
⋃

i∈I Ai). Indeed,

X ∈ ⋃
i∈I ℘(Ai) if and only if X ∈ ℘(Ai) for some i ∈ I

if and only if X ⊆ Ai for some i ∈ I
implies X ⊆ ∪i∈IAi

if and only if X ∈ ℘(∪i∈IAi)

The reverse inclusion is false, in fact if one of the sets Ai does not contain
all the others, then ∪i∈IAi ∈ ℘(∪i∈IAi) \

⋃
i∈I ℘(Ai).

4. What is the set (X × Y ) ∩ (Y ×X)? (3 pts.)

Answer: Let (u, v) ∈ (X × Y ) ∩ (Y ×X). Since (u, v) ∈ X × Y , u is an
element of X and v is an element of Y . Similarly, since (u, v) ∈ Y ×X,
u is an element of Y and v is an element of X. Thus both u and v are
elements of X ∩ Y , i.e. (u, v) ∈ (X ∩ Y )× (X ∩ Y ).

The reverse inclusion (X ∩ Y )× (X ∩ Y ) ⊆ (X × Y ) ∩ (Y ×X) is trivial.

5. Let α be a set such that x ⊆ α for all x ∈ α. Show that α ∪ {α} has the
same property. Give four examples of such sets. (4 pts.)

Proof: Let x ∈ α ∪ {α}. Then either x ∈ α or x ∈ {α}.
If x ∈ α, then by assumption x ⊆ α. Since α ⊆ α ∪ {α}, in this case we
get x ⊆ α ∪ {α}.
If x ∈ {α}, then x = α, and so x = α ⊆ α ∪ {α}.
Since ∅ has the property stated, starting from ∅, we can get as many
examples as we wish to, here are the first four:

∅ = 0
0 ∪ {0} = 1
1 ∪ {1} = 2
2 ∪ {2} = 3

2



6. Let Γ be a graph such that for any vertices α, α1, β, β1, if α 6= α1 and
β 6= β1, then there is a φ ∈ Aut(Γ) such that φ(α) = β and φ(α1) = β1.
What can you say about Γ? (5 pts.)

Answer: Then either the graph is the complete graph (all possible edges
exist) or the graph without edges at all. Indeed, otherwise we may find
α, α1 and β 6= β1 such that α and α1 are connected (hence α 6= α1) and β
and β1 are not connected, but then it is impossible to send the connected
pair (α, α1) to the nonconnected pair (β, β1).

7. Let φ : R −→ R be a one to one map such that φ(x + y) = φ(x) + φ(y)
and φ(x2) = φ(x)2 for all x, y ∈ R. Show that φ(xy) = φ(x)φ(y) for all
x, y ∈ R and φ(q) = q for all q ∈ Q. (10 pts.)

Proof: For any x, y ∈ R, we have φ(x)2 + 2φ(x)φ(y) + φ(y)2 = (φ(x) +
φ(y))2 = φ(x + y)2 = φ((x + y)2) = φ(x2 + 2xy + y2) = φ(x2) + 2φ(xy) +
φ(y2) = φ(x)2+2φ(xy)+φ(y)2 and so 2φ(x)φ(y) = 2φ(xy) and simplifying,
we get φ(x)φ(y) = φ(xy). This proves the first part.

Since φ(0) = φ(0 + 0) = φ(0) + φ(0), we must have φ(0) = 0.

Since φ(1) = φ(1 · 1) = φ(1)φ(1), we must have φ(1) = 0 or φ(1) = 1. But
the first case is forbidden because φ is one to one and φ(0) = 0 already.
Hence φ(1) = 1.

Now, it follows easily by induction that φ(n) = n for all n ∈ N because
φ(n+1) = φ(n)+φ(1) = φ(n)+1 = n+1 (the last equality is the inductive
hypothesis).

Also, for n ∈ N, we have 0 = φ(0) = φ(n + (−n)) = φ(n) + φ(−n) and so
φ(−n) = −φ(n) = −n. Thus φ(n) = n for all n ∈ Z.

Now if q ∈ Q, then q = n/m some n, m ∈ Z and m 6= 0. Then we have
n = φ(n) = φ(mn/m) = φ(m)φ(n/m) = mφ(n/m) and so φ(n/m) =
n/m, i.e. φ(q) = q.

8. Given a set X, define ℘n(X) as follows by induction on n: ℘0(X) = X
and ℘n+1(X) = ℘(℘n(X)).

a) Is there a natural number n such that for any set X, {{∅}, {{X}}} ∈
℘n(X)? (8 pts.)

Answer: For n ≥ 4 note the equivalence of the following propositions:

{{∅}, {{X}}} ∈ ℘n(X)
{{∅}, {{X}}} ⊆ ℘n−1(X)
{∅}, {{X}} ∈ ℘n−1(X)
{∅}, {{X}} ⊆ ℘n−2(X)
∅, {X} ∈ ℘n−2(X)
∅ ∈ ℘n−2(X) and {X} ⊆ ℘n−3(X)
{X} ⊆ ℘n−3(X)
{X} ⊆ ℘n−3(X)
X ∈ ℘n−3(X)
X ⊆ ℘n−4(X)
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If n = 4, the last condition holds for all X.
Does it hold for n = 5, i.e. do we have X ⊆ ℘(X) for all X? For this
condition to hold, we need any element of X to be a subset of X, and
this does not always hold. For any i ≥ 1, one can find a set X such that
X 6⊆ ℘i(X). Thus the condition does not hold for any n ≥ 5 (details are
left as an exercise).
For n = 0, 1, 2, 3, find examples of X such that {{∅}, {{X}}} 6∈ ℘n(X).
b) Show that ℘(℘n(X)) = ℘n(℘(X)) for all sets X and all natural numbers
n. (8 pts.)
Proof: We proceed by induction on n. The condition certainly holds for
n = 0. Assume it holds for n. We have ℘(℘n+1(X)) = ℘(℘n(℘(X))) =
℘n+1(℘(X)).
c) Show that ℘n(℘m(X)) = ℘m(℘n(X)) for all sets X and all natural
numbers n and m. (8 pts.)
Proof: We proceed by induction on m. The condition certainly holds for
m = 0. By part (b) it also holds for m = 1. Assume it holds for m. We
have ℘n(℘m+1(X)) = ℘n(℘(℘m(X))) = ℘(℘n(℘(X)) = ℘n+1(℘m(X)).

9. Define a partial order ≺ on N\{0, 1} by x ≺ y if and only if x2|y. Describe
all the automorphisms of this poset. (5 pts.)
Answer: The minimal elements of this ordered set (call it Γ) are the
square free numbers. Thus any automorphism of Γ should send the square
free numbers onto the square free numbers. But the prime numbers have
a privilege. Indeed if p is a prime number, then p has an immediate
successor (namely p2) that has only one predecessor, namely p. Thus any
automorphism should be multiplicative and be given by a permutation of
primes.

10. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ
define the relation αRβ if and only if α∩ β = ∅. Then Γ becomes a graph
with this relation.
a) Calculate Aut(Γ) when |X| = 4. (3 pts.)
Answer: The graph Γ is just six vertices joined two by two. A group
isomorphic to (Z/2Z)3 preserves the edges. And Sym(3) permutes the
edges. Thus the group has 8× 3! = 48 elements.
More formally, one can prove this as follows. Let the points be {1, 2, 3, 4, 5, 6}
and the edges be v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6). We can embed
Sym(3) in Aut(Γ) ≤ Sym(6) via

Id3 7→ Id6

(12) 7→ (12)(45)
(13) 7→ (13)(46)
(23) 7→ (23)(56)
(123) 7→ (123)(456)
(132) 7→ (132)(465)
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For any φ ∈ Aut(Γ) there is an element α in the image of Sym(3) such
that α−1φ preserves the three edges v1 = (1, 4), v2 = (2, 5) and v3 = (3, 6).
Thus α−1φ ∈ Sym{1, 4} × Sym{2, 5} × Sym{3, 6} ' (Z/2Z)3. It follows
that Aut(Γ) ' (Z/2Z)3o Sym(3) (to be explained next year).

b) Draw the graph Γ when X = {1, 2, 3, 4, 5}. (3 pts.)

There are ten points. Draw two pentagons one inside the other. Label the
outside points as {1, 2}, {3, 4}, {5, 1}, {2, 3}, {4, 5}. Complete the graph.

c) Show that Sym(5) imbeds in Aut(Γ) naturally. (You have to show that
each element σ of Sym(5) gives rise to an automorphism σ̃ of Γ in such
a way that the map σ 7→ σ̃ is an injection from Sym(5) into Aut(Γ) and
that σ̃1 ◦ σ2 = σ̃1 ◦ σ̃2). (8 pts.)

d) Show that Aut(Γ) ' Sym(5). (12 pts.)

Proof of (c) and (d): Clearly any element of σ ∈ Sym(5) gives rise to
an automorphism σ̃ of Γ via σ̃{a, b} = {σ(a), σ(b)}. The fact that this
map preserves the incidence relation is clear. This map is one to one be-
cause if σ̃ = τ̃ , then for all distinct a, b, c, we have {σ(b)} = {σ(a), σ(b)}∩
{σ(b), σ(c)} = σ̃{a, b}∩σ̃{b, c} = τ̃{a, b}∩τ̃{b, c} = {τ(a), τ(b)}∩{τ(b), τ(c)} =
{τ(b)} and hence σ(b) = τ(b).

Let φ ∈ Aut(Γ). We will compose φ by elements of Sym(5) to obtain the
identity map. There is an σ ∈ Sym(5) such that φ{1, 2} = σ̃{1, 2} and
φ{3, 4} = σ̃{3, 4}. Thus, replacing φ by σ−1φ, we may assume that φ
fixes the vertices {1, 2} and {3, 4}. Now φ must preserve or exchange the
vertices {3, 5} and {4, 5}. By applying the element (34) of Sym(5) we may
assume that these two vertices are fixed as well. Now φ must preserve or
exchange the vertices {1, 3} and {2, 3}. By applying the element (12) of
Sym(5) we may assume that these two vertices are fixed as well. Now all
the vertices must be fixed.
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