Naive Set Theory (Math 111) First Midterm Questions and Answers

Fall 2002 Ali Nesin

November 27, 2002

1. a) Given a set X, define $\cup X$ as follows:

 $y \in \bigcup X$ if and only if there is an $x \in X$ such that $y \in x$.

Show that $\cup \emptyset = \emptyset$. (3 pts.)

Proof: Set $X = \emptyset$ in the definition. Thus

 $y \in \bigcup \emptyset$ if and only if there is an $x \in \emptyset$ such that $y \in x$.

Since there is no $x \in \emptyset$, we see that $\cup \emptyset = \emptyset$.

b) Given a set X, define $\cap_1 X$ and $\cap_2 X$ as follows:

 $\begin{array}{ll} y \in \cap_1 X & \textit{if and only if} & y \in x \textit{ for all } x \in X \\ y \in \cap_2 X & \textit{if and only if} & y \in \cup X \textit{ and } y \in x \textit{ for all } x \in X \end{array}$

Is $\cap_1 X = \cap_2 X$ for all X? Which definition do you prefer for $\cap X$ and why? (5 pts.)

Answer: Certainly $\cap_2 X \subseteq \cap_1 X$ because $\cap_2 X = (\cap_1 X) \cap (\cup X)$ by definition.

The reverse inclusion holds only if $X \neq \emptyset$. Indeed, assume $X \neq \emptyset$ and let $y \in \cap_1 X$. To show that $y \in \cap_2 X$, we need to show that $y \in \cup X$, i.e. that $y \in x$ for some $x \in X$. Since $X \neq \emptyset$ and $y \in \cap_1 X$, this holds trivially, i.e. $y \in x$ for some $x \in X$.

The reverse inclusion does not hold if $X = \emptyset$. Indeed, $\bigcap_2 \emptyset = (\bigcap_1 \emptyset) \cap (\cup \emptyset) = (\bigcap_1 \emptyset) \cap \emptyset = \emptyset$. On the other hand,

 $y \in \cap_1 \emptyset$ if and only if $y \in x$ for all $x \in \emptyset$

and this condition holds for all y. Hence $\cap_1 \emptyset$ is the whole universe and is not even a set.

Thus we should prefer $\cap_2 X$ for the definition of $\cap X$ since the outcome would then be a set for any set X, even for $X = \emptyset$!

2. Find a set X such that $X \cap \wp(X) \neq \emptyset$. (3 pts.)

Answer. Since $\emptyset \in \wp(X)$ for any X, any set X that contains \emptyset as element would do, e.g. we may take $X = \{\emptyset\}$.

3. Let $(A_i)_{i \in I}$ be a family of sets.

a) Show that $\bigcap_{i \in I} \wp(A_i) = \wp(\bigcap_{i \in I} A_i)$. (3 pts.)

Proof:

$$\begin{aligned} X \in \bigcap_{i \in I} \wp(A_i) & \text{if and only if} \quad X \in \wp(A_i) \text{ for all } i \in I \\ & \text{if and only if} \quad X \subseteq A_i \text{ for all } i \in I \\ & \text{if and only if} \quad X \subseteq \bigcap_{i \in I} A_i \\ & \text{if and only if} \quad X \in \wp(\bigcap_{i \in I} A_i) \end{aligned}$$

b) What is the relationship between $\bigcup_{i \in I} \wp(A_i)$ and $\wp(\bigcup_{i \in I} A_i)$? (4 pts.) Answer: We have $\bigcup_{i \in I} \wp(A_i) \subseteq \wp(\bigcup_{i \in I} A_i)$. Indeed,

$$\begin{array}{lll} X \in \bigcup_{i \in I} \wp(A_i) & \text{ if and only if } & X \in \wp(A_i) \text{ for some } i \in I \\ & \text{ if and only if } & X \subseteq A_i \text{ for some } i \in I \\ & \text{ implies } & X \subseteq \cup_{i \in I} A_i \\ & \text{ if and only if } & X \in \wp(\cup_{i \in I} A_i) \end{array}$$

The reverse inclusion is false, in fact if one of the sets A_i does not contain all the others, then $\bigcup_{i \in I} A_i \in \wp(\bigcup_{i \in I} A_i) \setminus \bigcup_{i \in I} \wp(A_i)$.

4. What is the set $(X \times Y) \cap (Y \times X)$? (3 pts.)

Answer: Let $(u, v) \in (X \times Y) \cap (Y \times X)$. Since $(u, v) \in X \times Y$, u is an element of X and v is an element of Y. Similarly, since $(u, v) \in Y \times X$, u is an element of Y and v is an element of X. Thus both u and v are elements of $X \cap Y$, i.e. $(u, v) \in (X \cap Y) \times (X \cap Y)$.

The reverse inclusion $(X \cap Y) \times (X \cap Y) \subseteq (X \times Y) \cap (Y \times X)$ is trivial.

5. Let α be a set such that $x \subseteq \alpha$ for all $x \in \alpha$. Show that $\alpha \cup \{\alpha\}$ has the same property. Give four examples of such sets. (4 pts.)

Proof: Let $x \in \alpha \cup \{\alpha\}$. Then either $x \in \alpha$ or $x \in \{\alpha\}$.

If $x \in \alpha$, then by assumption $x \subseteq \alpha$. Since $\alpha \subseteq \alpha \cup \{\alpha\}$, in this case we get $x \subseteq \alpha \cup \{\alpha\}$.

If $x \in \{\alpha\}$, then $x = \alpha$, and so $x = \alpha \subseteq \alpha \cup \{\alpha\}$.

Since \emptyset has the property stated, starting from \emptyset , we can get as many examples as we wish to, here are the first four:

```
 \begin{split} \emptyset &= 0 \\ 0 \cup \{0\} &= 1 \\ 1 \cup \{1\} &= 2 \\ 2 \cup \{2\} &= 3 \end{split}
```

6. Let Γ be a graph such that for any vertices α , α_1 , β , β_1 , if $\alpha \neq \alpha_1$ and $\beta \neq \beta_1$, then there is a $\phi \in \operatorname{Aut}(\Gamma)$ such that $\phi(\alpha) = \beta$ and $\phi(\alpha_1) = \beta_1$. What can you say about Γ ? (5 pts.)

Answer: Then either the graph is the complete graph (all possible edges exist) or the graph without edges at all. Indeed, otherwise we may find α , α_1 and $\beta \neq \beta_1$ such that α and α_1 are connected (hence $\alpha \neq \alpha_1$) and β and β_1 are not connected, but then it is impossible to send the connected pair (α, α_1) to the nonconnected pair (β, β_1) .

7. Let $\phi : \mathbb{R} \longrightarrow \mathbb{R}$ be a one to one map such that $\phi(x+y) = \phi(x) + \phi(y)$ and $\phi(x^2) = \phi(x)^2$ for all $x, y \in \mathbb{R}$. Show that $\phi(xy) = \phi(x)\phi(y)$ for all $x, y \in \mathbb{R}$ and $\phi(q) = q$ for all $q \in \mathbb{Q}$. (10 pts.)

Proof: For any $x, y \in \mathbb{R}$, we have $\phi(x)^2 + 2\phi(x)\phi(y) + \phi(y)^2 = (\phi(x) + \phi(y))^2 = \phi(x+y)^2 = \phi((x+y)^2) = \phi(x^2 + 2xy + y^2) = \phi(x^2) + 2\phi(xy) + \phi(y^2) = \phi(x)^2 + 2\phi(xy) + \phi(y)^2$ and so $2\phi(x)\phi(y) = 2\phi(xy)$ and simplifying, we get $\phi(x)\phi(y) = \phi(xy)$. This proves the first part.

Since $\phi(0) = \phi(0+0) = \phi(0) + \phi(0)$, we must have $\phi(0) = 0$.

Since $\phi(1) = \phi(1 \cdot 1) = \phi(1)\phi(1)$, we must have $\phi(1) = 0$ or $\phi(1) = 1$. But the first case is forbidden because ϕ is one to one and $\phi(0) = 0$ already. Hence $\phi(1) = 1$.

Now, it follows easily by induction that $\phi(n) = n$ for all $n \in \mathbb{N}$ because $\phi(n+1) = \phi(n) + \phi(1) = \phi(n) + 1 = n+1$ (the last equality is the inductive hypothesis).

Also, for $n \in \mathbb{N}$, we have $0 = \phi(0) = \phi(n + (-n)) = \phi(n) + \phi(-n)$ and so $\phi(-n) = -\phi(n) = -n$. Thus $\phi(n) = n$ for all $n \in \mathbb{Z}$.

Now if $q \in \mathbb{Q}$, then q = n/m some $n, m \in \mathbb{Z}$ and $m \neq 0$. Then we have $n = \phi(n) = \phi(mn/m) = \phi(m)\phi(n/m) = m\phi(n/m)$ and so $\phi(n/m) = n/m$, i.e. $\phi(q) = q$.

8. Given a set X, define $\wp^n(X)$ as follows by induction on n: $\wp^0(X) = X$ and $\wp^{n+1}(X) = \wp(\wp^n(X))$.

a) Is there a natural number n such that for any set X, $\{\{\emptyset\}, \{\{X\}\}\} \in \wp^n(X)$? (8 pts.)

Answer: For $n \ge 4$ note the equivalence of the following propositions:

$$\{\{\emptyset\}, \{\{X\}\}\} \in \wp^{n}(X) \\ \{\{\emptyset\}, \{\{X\}\}\} \subseteq \wp^{n-1}(X) \\ \{\emptyset\}, \{\{X\}\} \in \wp^{n-1}(X) \\ \{\emptyset\}, \{\{X\}\} \subseteq \wp^{n-2}(X) \\ \emptyset, \{X\} \in \wp^{n-2}(X) \\ \emptyset \in \wp^{n-2}(X) \text{ and } \{X\} \subseteq \wp^{n-3}(X) \\ \{X\} \subseteq \wp^{n-3}(X) \\ \{X\} \subseteq \wp^{n-3}(X) \\ X \in \wp^{n-3}(X) \\ X \subseteq \wp^{n-4}(X)$$

If n = 4, the last condition holds for all X.

Does it hold for n = 5, i.e. do we have $X \subseteq \wp(X)$ for all X? For this condition to hold, we need any element of X to be a subset of X, and this does not always hold. For any $i \ge 1$, one can find a set X such that $X \not\subseteq \wp^i(X)$. Thus the condition does not hold for any $n \ge 5$ (details are left as an exercise).

For n = 0, 1, 2, 3, find examples of X such that $\{\{\emptyset\}, \{\{X\}\}\} \notin \wp^n(X)$.

b) Show that $\wp(\wp^n(X)) = \wp^n(\wp(X))$ for all sets X and all natural numbers n. (8 pts.)

Proof: We proceed by induction on *n*. The condition certainly holds for n = 0. Assume it holds for *n*. We have $\wp(\wp^{n+1}(X)) = \wp(\wp^n(\wp(X))) = \wp^{n+1}(\wp(X))$.

c) Show that $\wp^n(\wp^m(X)) = \wp^m(\wp^n(X))$ for all sets X and all natural numbers n and m. (8 pts.)

Proof: We proceed by induction on m. The condition certainly holds for m = 0. By part (b) it also holds for m = 1. Assume it holds for m. We have $\wp^n(\wp^{m+1}(X)) = \wp^n(\wp(\wp^m(X))) = \wp(\wp^n(\wp(X))) = \wp^{n+1}(\wp^m(X))$.

Define a partial order ≺ on N\{0,1} by x ≺ y if and only if x²|y. Describe all the automorphisms of this poset. (5 pts.)

Answer: The minimal elements of this ordered set (call it Γ) are the square free numbers. Thus any automorphism of Γ should send the square free numbers onto the square free numbers. But the prime numbers have a privilege. Indeed if p is a prime number, then p has an immediate successor (namely p^2) that has only one predecessor, namely p. Thus any automorphism should be multiplicative and be given by a permutation of primes.

10. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ define the relation $\alpha R\beta$ if and only if $\alpha \cap \beta = \emptyset$. Then Γ becomes a graph with this relation.

a) Calculate Aut(Γ) when |X| = 4. (3 pts.)

Answer: The graph Γ is just six vertices joined two by two. A group isomorphic to $(\mathbb{Z}/2\mathbb{Z})^3$ preserves the edges. And Sym(3) permutes the edges. Thus the group has $8 \times 3! = 48$ elements.

More formally, one can prove this as follows. Let the points be $\{1, 2, 3, 4, 5, 6\}$ and the edges be $v_1 = (1, 4), v_2 = (2, 5)$ and $v_3 = (3, 6)$. We can embed Sym(3) in Aut(Γ) \leq Sym(6) via

Id_3	\mapsto	Id_6
(12)	\mapsto	(12)(45)
(13)	\mapsto	(13)(46)
(23)	\mapsto	(23)(56)
(123)	\mapsto	(123)(456)
(132)	\mapsto	(132)(465)

For any $\phi \in \operatorname{Aut}(\Gamma)$ there is an element α in the image of Sym(3) such that $\alpha^{-1}\phi$ preserves the three edges $v_1 = (1, 4), v_2 = (2, 5)$ and $v_3 = (3, 6)$. Thus $\alpha^{-1}\phi \in \operatorname{Sym}\{1, 4\} \times \operatorname{Sym}\{2, 5\} \times \operatorname{Sym}\{3, 6\} \simeq (\mathbb{Z}/2\mathbb{Z})^3$. It follows that $\operatorname{Aut}(\Gamma) \simeq (\mathbb{Z}/2\mathbb{Z})^3 \rtimes \operatorname{Sym}(3)$ (to be explained next year).

b) Draw the graph Γ when $X = \{1, 2, 3, 4, 5\}$. (3 pts.)

There are ten points. Draw two pentagons one inside the other. Label the outside points as $\{1,2\}$, $\{3,4\}$, $\{5,1\}$, $\{2,3\}$, $\{4,5\}$. Complete the graph.

c) Show that Sym(5) imbeds in Aut(Γ) naturally. (You have to show that each element σ of Sym(5) gives rise to an automorphism $\tilde{\sigma}$ of Γ in such a way that the map $\sigma \mapsto \tilde{\sigma}$ is an injection from Sym(5) into Aut(Γ) and that $\tilde{\sigma_1} \circ \tilde{\sigma_2} = \tilde{\sigma_1} \circ \tilde{\sigma_2}$). (8 pts.)

d) Show that $\operatorname{Aut}(\Gamma) \simeq \operatorname{Sym}(5)$. (12 pts.)

Proof of (c) and (d): Clearly any element of $\sigma \in \text{Sym}(5)$ gives rise to an automorphism $\tilde{\sigma}$ of Γ via $\tilde{\sigma}\{a,b\} = \{\sigma(a),\sigma(b)\}$. The fact that this map preserves the incidence relation is clear. This map is one to one because if $\tilde{\sigma} = \tilde{\tau}$, then for all distinct a, b, c, we have $\{\sigma(b)\} = \{\sigma(a), \sigma(b)\} \cap$ $\{\sigma(b), \sigma(c)\} = \tilde{\sigma}\{a,b\} \cap \tilde{\sigma}\{b,c\} = \tilde{\tau}\{a,b\} \cap \tilde{\tau}\{b,c\} = \{\tau(a),\tau(b)\} \cap \{\tau(b),\tau(c)\} =$ $\{\tau(b)\}$ and hence $\sigma(b) = \tau(b)$.

Let $\phi \in \operatorname{Aut}(\Gamma)$. We will compose ϕ by elements of $\operatorname{Sym}(5)$ to obtain the identity map. There is an $\sigma \in \operatorname{Sym}(5)$ such that $\phi\{1,2\} = \tilde{\sigma}\{1,2\}$ and $\phi\{3,4\} = \tilde{\sigma}\{3,4\}$. Thus, replacing ϕ by $\sigma^{-1}\phi$, we may assume that ϕ fixes the vertices $\{1,2\}$ and $\{3,4\}$. Now ϕ must preserve or exchange the vertices $\{3,5\}$ and $\{4,5\}$. By applying the element (34) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now ϕ must preserve or exchange the vertices $\{1,3\}$ and $\{2,3\}$. By applying the element (12) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now all the vertices must be fixed.