Naive Set Theory (Math 111) First Midterm Questions and Answers

Fall 2002
Ali Nesin
November 27, 2002

1. a) Given a set X, define $\cup X$ as follows:
$y \in \cup X$ if and only if there is an $x \in X$ such that $y \in x$.
Show that $\cup \emptyset=\emptyset$. (3 pts.)
Proof: Set $X=\emptyset$ in the definition. Thus

$$
y \in \cup \emptyset \text { if and only if there is an } x \in \emptyset \text { such that } y \in x .
$$

Since there is no $x \in \emptyset$, we see that $\cup \emptyset=\emptyset$.
b) Given a set X, define $\cap_{1} X$ and $\cap_{2} X$ as follows:

$$
\begin{array}{lll}
y \in \cap_{1} X & \text { if and only if } & y \in x \text { for all } x \in X \\
y \in \cap_{2} X & \text { if and only if } & y \in \cup X \text { and } y \in x \text { for all } x \in X
\end{array}
$$

Is $\cap_{1} X=\cap_{2} X$ for all X ? Which definition do you prefer for $\cap X$ and why? (5 pts.)

Answer: Certainly $\cap_{2} X \subseteq \cap_{1} X$ because $\cap_{2} X=\left(\cap_{1} X\right) \cap(\cup X)$ by definition.

The reverse inclusion holds only if $X \neq \emptyset$. Indeed, assume $X \neq \emptyset$ and let $y \in \cap_{1} X$. To show that $y \in \cap_{2} X$, we need to show that $y \in \cup X$, i.e. that $y \in x$ for some $x \in X$. Since $X \neq \emptyset$ and $y \in \cap_{1} X$, this holds trivially, i.e. $y \in x$ for some $x \in X$.
The reverse inclusion does not hold if $X=\emptyset$. Indeed, $\cap_{2} \emptyset=\left(\cap_{1} \emptyset\right) \cap(\cup \emptyset)=$ $\left(\cap_{1} \emptyset\right) \cap \emptyset=\emptyset$. On the other hand,

$$
y \in \cap_{1} \emptyset \text { if and only if } y \in x \text { for all } x \in \emptyset
$$

and this condition holds for all y. Hence $\cap_{1} \emptyset$ is the whole universe and is not even a set.

Thus we should prefer $\cap_{2} X$ for the definition of $\cap X$ since the outcome would then be a set for any set X, even for $X=\emptyset!$
2. Find a set X such that $X \cap \wp(X) \neq \emptyset$. (3 pts.)

Answer. Since $\emptyset \in \wp(X)$ for any X, any set X that contains \emptyset as element would do, e.g. we may take $X=\{\emptyset\}$.
3. Let $\left(A_{i}\right)_{i \in I}$ be a family of sets.
a) Show that $\bigcap_{i \in I} \wp\left(A_{i}\right)=\wp\left(\bigcap_{i \in I} A_{i}\right)$. (3 pts.)

Proof:

$$
\begin{array}{lll}
X \in \bigcap_{i \in I} \wp\left(A_{i}\right) & \text { if and only if } & X \in \wp\left(A_{i}\right) \text { for all } i \in I \\
& \text { if and only if } & X \subseteq A_{i} \text { for all } i \in I \\
& \text { if and only if } & X \subseteq \bigcap_{i \in I} A_{i} \\
& \text { if and only if } & X \in \wp\left(\bigcap_{i \in I} A_{i}\right)
\end{array}
$$

b) What is the relationship between $\bigcup_{i \in I} \wp\left(A_{i}\right)$ and $\wp\left(\bigcup_{i \in I} A_{i}\right)$? (4 pts.)

Answer: We have $\bigcup_{i \in I} \wp\left(A_{i}\right) \subseteq \wp\left(\bigcup_{i \in I} A_{i}\right)$. Indeed,

$$
\begin{array}{lll}
X \in \bigcup_{i \in I} \wp\left(A_{i}\right) & \text { if and only if } & X \in \wp\left(A_{i}\right) \text { for some } i \in I \\
& \text { if and only if } & X \subseteq A_{i} \text { for some } i \in I \\
& \text { implies } & X \subseteq \cup_{i \in I} A_{i} \\
& \text { if and only if } & X \in \wp\left(\cup_{i \in I} A_{i}\right)
\end{array}
$$

The reverse inclusion is false, in fact if one of the sets A_{i} does not contain all the others, then $\cup_{i \in I} A_{i} \in \wp\left(\cup_{i \in I} A_{i}\right) \backslash \bigcup_{i \in I} \wp\left(A_{i}\right)$.
4. What is the set $(X \times Y) \cap(Y \times X)$? (3 pts.)

Answer: Let $(u, v) \in(X \times Y) \cap(Y \times X)$. Since $(u, v) \in X \times Y, u$ is an element of X and v is an element of Y. Similarly, since $(u, v) \in Y \times X$, u is an element of Y and v is an element of X. Thus both u and v are elements of $X \cap Y$, i.e. $(u, v) \in(X \cap Y) \times(X \cap Y)$.
The reverse inclusion $(X \cap Y) \times(X \cap Y) \subseteq(X \times Y) \cap(Y \times X)$ is trivial.
5. Let α be a set such that $x \subseteq \alpha$ for all $x \in \alpha$. Show that $\alpha \cup\{\alpha\}$ has the same property. Give four examples of such sets. (4 pts.)
Proof: Let $x \in \alpha \cup\{\alpha\}$. Then either $x \in \alpha$ or $x \in\{\alpha\}$.
If $x \in \alpha$, then by assumption $x \subseteq \alpha$. Since $\alpha \subseteq \alpha \cup\{\alpha\}$, in this case we get $x \subseteq \alpha \cup\{\alpha\}$.
If $x \in\{\alpha\}$, then $x=\alpha$, and so $x=\alpha \subseteq \alpha \cup\{\alpha\}$.
Since \emptyset has the property stated, starting from \emptyset, we can get as many examples as we wish to, here are the first four:

$$
\begin{aligned}
& \emptyset=0 \\
& 0 \cup\{0\}=1 \\
& 1 \cup\{1\}=2 \\
& 2 \cup\{2\}=3
\end{aligned}
$$

6. Let Γ be a graph such that for any vertices $\alpha, \alpha_{1}, \beta, \beta_{1}$, if $\alpha \neq \alpha_{1}$ and $\beta \neq \beta_{1}$, then there is a $\phi \in \operatorname{Aut}(\Gamma)$ such that $\phi(\alpha)=\beta$ and $\phi\left(\alpha_{1}\right)=\beta_{1}$. What can you say about Γ ? (5 pts.)
Answer: Then either the graph is the complete graph (all possible edges exist) or the graph without edges at all. Indeed, otherwise we may find α, α_{1} and $\beta \neq \beta_{1}$ such that α and α_{1} are connected (hence $\alpha \neq \alpha_{1}$) and β and β_{1} are not connected, but then it is impossible to send the connected pair (α, α_{1}) to the nonconnected pair $\left(\beta, \beta_{1}\right)$.
7. Let $\phi: \mathbb{R} \longrightarrow \mathbb{R}$ be a one to one map such that $\phi(x+y)=\phi(x)+\phi(y)$ and $\phi\left(x^{2}\right)=\phi(x)^{2}$ for all $x, y \in \mathbb{R}$. Show that $\phi(x y)=\phi(x) \phi(y)$ for all $x, y \in \mathbb{R}$ and $\phi(q)=q$ for all $q \in \mathbb{Q}$. (10 pts.)
Proof: For any $x, y \in \mathbb{R}$, we have $\phi(x)^{2}+2 \phi(x) \phi(y)+\phi(y)^{2}=(\phi(x)+$ $\phi(y))^{2}=\phi(x+y)^{2}=\phi\left((x+y)^{2}\right)=\phi\left(x^{2}+2 x y+y^{2}\right)=\phi\left(x^{2}\right)+2 \phi(x y)+$ $\phi\left(y^{2}\right)=\phi(x)^{2}+2 \phi(x y)+\phi(y)^{2}$ and so $2 \phi(x) \phi(y)=2 \phi(x y)$ and simplifying, we get $\phi(x) \phi(y)=\phi(x y)$. This proves the first part.
Since $\phi(0)=\phi(0+0)=\phi(0)+\phi(0)$, we must have $\phi(0)=0$.
Since $\phi(1)=\phi(1 \cdot 1)=\phi(1) \phi(1)$, we must have $\phi(1)=0$ or $\phi(1)=1$. But the first case is forbidden because ϕ is one to one and $\phi(0)=0$ already. Hence $\phi(1)=1$.
Now, it follows easily by induction that $\phi(n)=n$ for all $n \in \mathbb{N}$ because $\phi(n+1)=\phi(n)+\phi(1)=\phi(n)+1=n+1$ (the last equality is the inductive hypothesis).
Also, for $n \in \mathbb{N}$, we have $0=\phi(0)=\phi(n+(-n))=\phi(n)+\phi(-n)$ and so $\phi(-n)=-\phi(n)=-n$. Thus $\phi(n)=n$ for all $n \in \mathbb{Z}$.
Now if $q \in \mathbb{Q}$, then $q=n / m$ some $n, m \in \mathbb{Z}$ and $m \neq 0$. Then we have $n=\phi(n)=\phi(m n / m)=\phi(m) \phi(n / m)=m \phi(n / m)$ and so $\phi(n / m)=$ n / m, i.e. $\phi(q)=q$.
8. Given a set X, define $\wp^{n}(X)$ as follows by induction on $n: \wp^{0}(X)=X$ and $\wp^{n+1}(X)=\wp\left(\wp^{n}(X)\right)$.
a) Is there a natural number n such that for any set $X,\{\{\emptyset\},\{\{X\}\}\} \in$ $\wp^{n}(X)$? (8 pts.)
Answer: For $n \geq 4$ note the equivalence of the following propositions:

$$
\begin{aligned}
& \{\{\emptyset\},\{\{X\}\}\} \in \wp^{n}(X) \\
& \{\{\emptyset\},\{\{X\}\}\} \subseteq \wp^{n-1}(X) \\
& \{\emptyset\},\{\{X\}\} \in \wp^{n-1}(X) \\
& \{\emptyset\},\{\{X\}\} \subseteq \wp^{n-2}(X) \\
& \emptyset,\{X\} \in \wp^{n-2}(X) \\
& \emptyset \in \wp^{n-2}(X) \text { and }\{X\} \subseteq \wp^{n-3}(X) \\
& \{X\} \subseteq \wp^{n-3}(X) \\
& \{X\} \subseteq \wp^{n-3}(X) \\
& X \in \wp^{n-3}(X) \\
& X \subseteq \wp^{n-4}(X)
\end{aligned}
$$

If $n=4$, the last condition holds for all X.
Does it hold for $n=5$, i.e. do we have $X \subseteq \wp(X)$ for all X ? For this condition to hold, we need any element of X to be a subset of X, and this does not always hold. For any $i \geq 1$, one can find a set X such that $X \nsubseteq \wp^{i}(X)$. Thus the condition does not hold for any $n \geq 5$ (details are left as an exercise).
For $n=0,1,2,3$, find examples of X such that $\{\{\emptyset\},\{\{X\}\}\} \notin \wp^{n}(X)$.
b) Show that $\wp\left(\wp^{n}(X)\right)=\wp^{n}(\wp(X))$ for all sets X and all natural numbers n. (8 pts.)

Proof: We proceed by induction on n. The condition certainly holds for $n=0$. Assume it holds for n. We have $\wp\left(\wp^{n+1}(X)\right)=\wp\left(\wp^{n}(\wp(X))\right)=$ $\wp^{n+1}(\wp(X))$.
c) Show that $\wp^{n}\left(\wp^{m}(X)\right)=\wp^{m}\left(\wp^{n}(X)\right)$ for all sets X and all natural numbers n and m. (8 pts.)
Proof: We proceed by induction on m. The condition certainly holds for $m=0$. By part (b) it also holds for $m=1$. Assume it holds for m. We have $\wp^{n}\left(\wp^{m+1}(X)\right)=\wp^{n}\left(\wp\left(\wp^{m}(X)\right)\right)=\wp\left(\wp^{n}(\wp(X))=\wp^{n+1}\left(\wp^{m}(X)\right)\right.$.
9. Define a partial order \prec on $\mathbb{N} \backslash\{0,1\}$ by $x \prec y$ if and only if $x^{2} \mid y$. Describe all the automorphisms of this poset. (5 pts.)
Answer: The minimal elements of this ordered set (call it Γ) are the square free numbers. Thus any automorphism of Γ should send the square free numbers onto the square free numbers. But the prime numbers have a privilege. Indeed if p is a prime number, then p has an immediate successor (namely p^{2}) that has only one predecessor, namely p. Thus any automorphism should be multiplicative and be given by a permutation of primes.
10. Let X be a set. Let Γ be the set of subsets of X with two elements. On Γ define the relation $\alpha R \beta$ if and only if $\alpha \cap \beta=\emptyset$. Then Γ becomes a graph with this relation.
a) Calculate $\operatorname{Aut}(\Gamma)$ when $|X|=4$. (3 pts.)

Answer: The graph Γ is just six vertices joined two by two. A group isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{3}$ preserves the edges. And $\operatorname{Sym}(3)$ permutes the edges. Thus the group has $8 \times 3!=48$ elements.
More formally, one can prove this as follows. Let the points be $\{1,2,3,4,5,6\}$ and the edges be $v_{1}=(1,4), v_{2}=(2,5)$ and $v_{3}=(3,6)$. We can embed $\operatorname{Sym}(3)$ in $\operatorname{Aut}(\Gamma) \leq \operatorname{Sym}(6)$ via

Id_{3}	\mapsto	Id_{6}
(12)	\mapsto	$(12)(45)$
(13)	\mapsto	$(13)(46)$
(23)	\mapsto	$(23)(56)$
(123)	\mapsto	$(123)(456)$
(132)	\mapsto	$(132)(465)$

For any $\phi \in \operatorname{Aut}(\Gamma)$ there is an element α in the image of $\operatorname{Sym}(3)$ such that $\alpha^{-1} \phi$ preserves the three edges $v_{1}=(1,4), v_{2}=(2,5)$ and $v_{3}=(3,6)$. Thus $\alpha^{-1} \phi \in \operatorname{Sym}\{1,4\} \times \operatorname{Sym}\{2,5\} \times \operatorname{Sym}\{3,6\} \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3}$. It follows that $\operatorname{Aut}(\Gamma) \simeq(\mathbb{Z} / 2 \mathbb{Z})^{3} \rtimes \operatorname{Sym}(3)$ (to be explained next year).
b) Draw the graph Γ when $X=\{1,2,3,4,5\}$. (3 pts.)

There are ten points. Draw two pentagons one inside the other. Label the outside points as $\{1,2\},\{3,4\},\{5,1\},\{2,3\},\{4,5\}$. Complete the graph.
c) Show that $\operatorname{Sym}(5)$ imbeds in $\operatorname{Aut}(\Gamma)$ naturally. (You have to show that each element σ of $\operatorname{Sym}(5)$ gives rise to an automorphism $\tilde{\sigma}$ of Γ in such a way that the map $\sigma \mapsto \tilde{\sigma}$ is an injection from $\operatorname{Sym}(5)$ into $\operatorname{Aut}(\Gamma)$ and that $\left.\widetilde{\sigma_{1} \circ \sigma_{2}}=\widetilde{\sigma_{1}} \circ \widetilde{\sigma_{2}}\right) .(8 \mathrm{pts}$.
d) Show that $\operatorname{Aut}(\Gamma) \simeq \operatorname{Sym}(5)$. (12 pts.)

Proof of (c) and (d): Clearly any element of $\sigma \in \operatorname{Sym}(5)$ gives rise to an automorphism $\tilde{\sigma}$ of Γ via $\tilde{\sigma}\{a, b\}=\{\sigma(a), \sigma(b)\}$. The fact that this map preserves the incidence relation is clear. This map is one to one because if $\tilde{\sigma}=\tilde{\tau}$, then for all distinct a, b, c, we have $\{\sigma(b)\}=\{\sigma(a), \sigma(b)\} \cap$ $\{\sigma(b), \sigma(c)\}=\tilde{\sigma}\{a, b\} \cap \tilde{\sigma}\{b, c\}=\tilde{\tau}\{a, b\} \cap \tilde{\tau}\{b, c\}=\{\tau(a), \tau(b)\} \cap\{\tau(b), \tau(c)\}=$ $\{\tau(b)\}$ and hence $\sigma(b)=\tau(b)$.
Let $\phi \in \operatorname{Aut}(\Gamma)$. We will compose ϕ by elements of $\operatorname{Sym}(5)$ to obtain the identity map. There is an $\sigma \in \operatorname{Sym}(5)$ such that $\phi\{1,2\}=\tilde{\sigma}\{1,2\}$ and $\phi\{3,4\}=\tilde{\sigma}\{3,4\}$. Thus, replacing ϕ by $\sigma^{-1} \phi$, we may assume that ϕ fixes the vertices $\{1,2\}$ and $\{3,4\}$. Now ϕ must preserve or exchange the vertices $\{3,5\}$ and $\{4,5\}$. By applying the element (34) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now ϕ must preserve or exchange the vertices $\{1,3\}$ and $\{2,3\}$. By applying the element (12) of $\operatorname{Sym}(5)$ we may assume that these two vertices are fixed as well. Now all the vertices must be fixed.

