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1. a) Given a set X, define UX as follows:
y € UX if and only if there is an x € X such that y € x.

Show that U) = 0. (3 pts.)
Proof: Set X = () in the definition. Thus

y € UD if and only if there is an x € () such that y € z.

Since there is no z € (), we see that U} = 0.

b) Given a set X, define M1 X and NaX as follows:

yeMmX ifandonlyif ye€x forallz e X
y€eNX ifandonlyif yeUX andy € x forallz e X

Is X = Mo X for all X? Which definition do you prefer for NX and
why? (5 pts.)

Answer: Certainly Ns X C N1 X because Ne X = (M X) N (UX) by defi-
nition.

The reverse inclusion holds only if X # (. Indeed, assume X # () and let
y € N1 X. To show that y € N2 X, we need to show that y € UX i.e. that
y € x for some x € X. Since X # () and y € N1 X, this holds trivially, i.e.
y € x for some x € X.

The reverse inclusion does not hold if X = ). Indeed, N2 = (N10)N(UG) =
(N1®) N = 0. On the other hand,

y € N0 if and only if y € x for all x € 0

and this condition holds for all y. Hence N is the whole universe and is
not even a set.



Thus we should prefer Ny X for the definition of NX since the outcome
would then be a set for any set X, even for X = (J!
. Find a set X such that X Np(X) # 0. (3 pts.)
Answer. Since () € p(X) for any X, any set X that contains ) as element
would do, e.g. we may take X = {0}.
. Let (Ay)ier be a family of sets.
a) Show that (,c; 9(Ai) = (e Ai)- (3 pts.)
Proof:
X € Nier o(A;) if and only if X € p(A;) forallie T
ifand only if X C A; foralliel
if and only if X C(),o; As
if and only if X € p(,c; 4i)

b) What is the relationship between | J;c; p(Ai) and p(U;c; Ai)? (4 pts.)
Answer: We have | J,.; p(Ai) C p(U,;c; As). Indeed,
X € U;erp(A;) if and only if X € p(A;) for some i € 1
if and only if X C A; for some i €
implies X - UiEIA’L'
if and only if X € p(U;er4;)
The reverse inclusion is false, in fact if one of the sets A; does not contain
all the others, then U;c7A; € p(UieIAi) \ UieI p(AZ)
. What is the set (X xY)N (Y x X)? (3 pts.)

Answer: Let (u,v) € (X xY)N (Y x X). Since (u,v) € X XY, u is an
element of X and v is an element of Y. Similarly, since (u,v) € Y x X
u is an element of Y and v is an element of X. Thus both u and v are
elements of X NY, ie. (u,v) € (X NY) x (XNY).

The reverse inclusion (X NY) x (X NY) C (X xY)N (Y x X) is trivial.
. Let o be a set such that © C « for all x € a. Show that o U {a} has the
same property. Give four examples of such sets. (4 pts.)

Proof: Let x € o U {a}. Then either z € o or = € {a}.

If ¢ € a, then by assumption x C «. Since o C U {«}, in this case we
get ¢ C aU{a}.

If x € {a}, then x = a, and so 2 = @ C a U {a}.

Since () has the property stated, starting from @, we can get as many
examples as we wish to, here are the first four:

D=0

ou{0}=1
1u{l} =2
2U{2} =3



6. Let T be a graph such that for any vertices o, ay, B, 81, if @ # a1 and
B # B1, then there is a ¢ € Aut(T") such that ¢p(a) = G and ¢p(a1) = Pr.
What can you say about T'? (5 pts.)

Answer: Then either the graph is the complete graph (all possible edges
exist) or the graph without edges at all. Indeed, otherwise we may find
a, a1 and B # 5 such that a and a; are connected (hence a # o) and 8
and [3; are not connected, but then it is impossible to send the connected
pair («, 1) to the nonconnected pair (3, 81).

7. Let ¢ : R — R be a one to one map such that ¢(x +y) = ¢(z) + ¢(y)
and ¢(x?) = ¢(x)? for all x, y € R. Show that ¢(zy) = ¢(x)d(y) for all
z,y €R and ¢(q) = q for all ¢ € Q. (10 pts.)

Proof: For any z,y € R, we have ¢(z)? + 2¢(x)d(y) + ¢(y)? = (¢(z) +
$(y))? = o(a +y)? = ¢((x + y)?) = ¢(a? + 22y +y?) = ¢(a?) + 26(xy) +
P(y?) = o(2)*+20(xy)+d(y)? and so 2¢(x)(y) = 2¢(wy) and simplifying,
we get ¢(x)p(y) = ¢(zy). This proves the first part.

Since ¢(0) = ¢(0+ 0) = ¢(0) + ¢(0), we must have ¢(0) = 0.

Since ¢(1) = ¢(1-1) = ¢(1)¢(1), we must have ¢(1) =0 or ¢(1) = 1. But
the first case is forbidden because ¢ is one to one and ¢(0) = 0 already.
Hence ¢(1) = 1.

Now, it follows easily by induction that ¢(n) = n for all n € N because
d(n+1) = o(n)+é(1) = ¢(n)+1 = n+1 (the last equality is the inductive
hypothesis).

Also, for n € N, we have 0 = ¢(0) = ¢p(n+ (—n)) = ¢(n) + ¢(—n) and so
¢(—n) = —p(n) = —n. Thus ¢(n) = n for all n € Z.

Now if ¢ € Q, then ¢ = n/m some n, m € Z and m # 0. Then we have
n = ¢(n) = ¢(mn/m) = ¢(m)p(n/m) = meé(n/m) and so ¢(n/m) =
n/m, ie. $(g) = g.

8. Given a set X, define p"(X) as follows by induction on n: p°(X) = X
and " (X) = p(p" (X))
a) Is there a natural number n such that for any set X, {{0},{{X}}} €
P"(X)7 (8 pts.)
Answer: For n > 4 note the equivalence of the following propositions:

{{0}, {{X}}} € p"(X)

{0}, {{X}}} € " H(X)

{0}, {{X}} e " 1(X)

{0}, {{X}} € p"2(X)

0, {X} € p"*(X)

0 € " *(X) and {X} C p"*(X)
{X} Cpm?(X)
{X} € pn?(X)
X epn3(X



10.

If n = 4, the last condition holds for all X.

Does it hold for n = 5, i.e. do we have X C p(X) for all X? For this
condition to hold, we need any element of X to be a subset of X, and
this does not always hold. For any ¢ > 1, one can find a set X such that
X ¢ p*(X). Thus the condition does not hold for any n > 5 (details are
left as an exercise).

For n =0,1,2,3, find examples of X such that {{0}, {{X}}} & p"(X).

b) Show that p(p™(X)) = " (p(X)) for all sets X and all natural numbers
n. (8 pts.)

Proof: We proceed by induction on n. The condition certainly holds for
n = 0. Assume it holds for n. We have p(p" ™1 (X)) = p(p"(p(X))) =
P (p(X)).

c) Show that p"(p™ (X)) = p™(p"(X)) for all sets X and all natural
numbers n and m. (8 pts.)

Proof: We proceed by induction on m. The condition certainly holds for
m = 0. By part (b) it also holds for m = 1. Assume it holds for m. We

have " (0" (X)) = 9" (p(p"(X))) = p(p" (p(X)) = " (p™(X)).

Define a partial order < on N\{0, 1} by = < y if and only if z2|y. Describe
all the automorphisms of this poset. (5 pts.)

Answer: The minimal elements of this ordered set (call it T') are the
square free numbers. Thus any automorphism of I' should send the square
free numbers onto the square free numbers. But the prime numbers have
a privilege. Indeed if p is a prime number, then p has an immediate
successor (namely p?) that has only one predecessor, namely p. Thus any
automorphism should be multiplicative and be given by a permutation of
primes.

Let X be a set. Let T be the set of subsets of X with two elements. On T’
define the relation aRB if and only if aNB = 0. Then T becomes a graph
with this relation.

a) Calculate Aut(T") when |X|=4. (3 pts.)
Answer: The graph T' is just six vertices joined two by two. A group

isomorphic to (Z/2Z)* preserves the edges. And Sym(3) permutes the
edges. Thus the group has 8 x 3! = 48 elements.

More formally, one can prove this as follows. Let the points be {1, 2, 3,4, 5,6}
and the edges be v1 = (1,4), v2 = (2,5) and vz = (3,6). We can embed
Sym(3) in Aut(T") < Sym(6) via

Id;  +— Idg

(12)  — (12)(45)
(13)  — (13)(46)
(23)  — (23)(56)
(123) +— (123)(456)
(132) — (132)(465)



For any ¢ € Aut(I") there is an element « in the image of Sym(3) such
that a~!¢ preserves the three edges v1 = (1,4), vo = (2,5) and vz = (3, 6).
Thus a~'¢ € Sym{1,4} x Sym{2,5} x Sym{3,6} ~ (Z/2Z)3. Tt follows
that Aut(T') ~ (Z/2Z)3 x Sym(3) (to be explained next year).

b) Draw the graph T' when X = {1,2,3,4,5}. (3 pts.)

There are ten points. Draw two pentagons one inside the other. Label the
outside points as {1,2}, {3,4}, {5,1}, {2, 3}, {4,5}. Complete the graph.

¢) Show that Sym(5) imbeds in Aut(T") naturally. (You have to show that
each element o of Sym(5) gives rise to an automorphism & of T in such
a way that the map o +— & is an injection from Sym(5) into Aut(I") and
that 0, 0 09 = 07 © o3). (8 pts.)

d) Show that Aut(I') ~ Sym(5). (12 pts.)

Proof of (c) and (d): Clearly any element of o € Sym(5) gives rise to
an automorphism & of I' via 6{a,b} = {o(a),o(b)}. The fact that this
map preserves the incidence relation is clear. This map is one to one be-
cause if & = 7, then for all distinct a, b, ¢, we have {a(b)} = {o(a),o(b)} N
{o(b),0(c)} = 6{a,b}Nc{b,c} = 7{a,b}NT{b,c} = {7(a), 7(0) }N{7(b),7(c)} =
{7(b)} and hence o(b) = 7(b).

Let ¢ € Aut(T"). We will compose ¢ by elements of Sym(5) to obtain the
identity map. There is an o € Sym(5) such that ¢{1,2} = &{1,2} and
#{3,4} = &{3,4}. Thus, replacing ¢ by 0~ 1¢, we may assume that ¢
fixes the vertices {1,2} and {3,4}. Now ¢ must preserve or exchange the
vertices {3,5} and {4,5}. By applying the element (34) of Sym(5) we may
assume that these two vertices are fixed as well. Now ¢ must preserve or
exchange the vertices {1,3} and {2,3}. By applying the element (12) of
Sym(5) we may assume that these two vertices are fixed as well. Now all
the vertices must be fixed.



