Set Theory Midterm May 2000 Ali Nesin

1. Define the function $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = 0 if $x \in \mathbb{R} \setminus \mathbb{Q}$ and f(x) = 1/q if $x \in \mathbb{Q}$, x = p/q where $p, q \in \mathbb{Z}$, (p, q) = 1 and q > 0. Show that f is continuous only at $a \notin \mathbb{R} \setminus \mathbb{Q}$.

2. We say that two partially ordered sets $(X, <_X)$ and $(Y, <_Y)$ are isomorphic if there is a bijection $f: X \to Y$ such that for all $x, x' \in X$,

 $x <_X x'$ iff $f(x) <_Y f(x')$.

How many nonisomorphic partial orders on a set X with 1, 2, 3, 4 and 5 points.

3. Let X be a set. A filter on X is a set \mathfrak{I} of subsets of X that satisfies the following properties:

i) If $A \in \mathfrak{S}$ and $A \subseteq B \subseteq X$, then $B \in \mathfrak{S}$.

ii) If A and B are in \mathfrak{I} , then so is $A \cap B$.

iii) $\emptyset \notin \mathfrak{S}$ and $X \in \mathfrak{S}$.

I.

If $A \subseteq X$ is a fixed nonempty subset of X, then the set of subsets of X that contain A is a filter on X, called **principal filter**. We will denote this filter by $\Im(A)$.

If X is infinite, then the set of cofinite subsets of X is a filter, called the **Fréchet filter**.

3a. Show that the Fréchet filter is nonprincipal.

A filter is called **ultrafilter** if it is a maximal filter.

3b. Show that a principle filter $\mathfrak{I}(A)$ is an ultrafilter iff *A* is a singleton set.

3c. Show that a filter \Im is an ultrafilter iff for all $A \subseteq X$, either A or A^c is in

3d. Show that every nonprinciple ultrafilter contains the Fréchet filter.

3e. Show that if X is infinite then there are nonprincipal ultrafilters on X. (Hint: Use Zorn's Lemma).