Math 111

Midterm 2 Febr. 2000 Ali Nesin

I. The purpose of this question is to show that the addition (+) is a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{N} , i.e. to show that the collection $A = \{(x, y, z) \in \mathbb{N}^3 : z = x + y\}$ is in fact a set.

Recall that + is defined inductively as follows: For all $x, y \in \mathbb{N}$,

x + 0 = xx + S(y) = S(x + y)

Call a subset *X* of \mathbb{N}^3 additive if

i. For all $x \in \mathbb{N}$, $(x, 0, x) \in X$ ii. If $(x, y, z) \in X$, then $(x, S(y), S(z)) \in X$.

1. Give an example of an additive set.

2. Show that every member of *A* is in every additive set.

3. Show that the intersection of a set of additive sets is an additive set.

4. Show that there is a unique smallest additive set (i.e. an additive set which is a subset of every additive set).

Let *B* be this smallest additive set.

5. Show that every member of *A* is in *B*.

6. Conversely show that if $(x, y, z) \in B$ then z = x + y. **Hint:** Proceed by induction on *y*. Assume $z \neq x + y$. Show that $B \setminus \{(x, y, z)\}$ is an additive set.

II. Inspired from the above question, show that the multiplication is a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{N} , i.e. to show that the collection $A = \{(x, y, z) \in \mathbb{N}^3 : z = xy\}$ is in fact a set.