I. The purpose of this question is to show that the addition (+) is a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{N} \), i.e. to show that the collection \(A = \{(x, y, z) \in \mathbb{N}^3 : z = x + y \} \) is in fact a set.

Recall that + is defined inductively as follows: For all \(x, y \in \mathbb{N} \),
\[
 x + 0 = x \\
 x + S(y) = S(x + y)
\]

Call a subset \(X \) of \(\mathbb{N}^3 \) additive if
i. For all \(x \in \mathbb{N} \), \((x, 0, x) \in X \)
ii. If \((x, y, z) \in X \), then \((x, S(y), S(z)) \in X \).

1. Give an example of an additive set.
2. Show that every member of \(A \) is in every additive set.
3. Show that the intersection of a set of additive sets is an additive set.
4. Show that there is a unique smallest additive set (i.e. an additive set which is a subset of every additive set).
 Let \(B \) be this smallest additive set.
5. Show that every member of \(A \) is in \(B \).
6. Conversely show that if \((x, y, z) \in B \) then \(z = x + y \). \textbf{Hint:} Proceed by induction on \(y \). Assume \(z \neq x + y \). Show that \(B \setminus \{(x, y, z)\} \) is an additive set.

II. Inspired from the above question, show that the multiplication is a function from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{N} \), i.e. to show that the collection \(A = \{(x, y, z) \in \mathbb{N}^3 : z = xy \} \) is in fact a set.