Math 111

Midterm 2
Febr. 2000
Ali Nesin
I. The purpose of this question is to show that the addition (+) is a function from $\mathbb{N} \times$ \mathbb{N} into \mathbb{N}, i.e. to show that the collection $A=\left\{(x, y, z) \in \mathbf{N}^{3}: z=x+y\right\}$ is in fact a set.

Recall that + is defined inductively as follows: For all $x, y \in \mathbb{N}$,

$$
\begin{aligned}
& x+0=x \\
& x+S(y)=S(x+y)
\end{aligned}
$$

Call a subset X of \mathbb{N}^{3} additive if
i. For all $x \in \mathbb{N},(x, 0, x) \in X$
ii. If $(x, y, z) \in X$, then $(x, S(y), S(z)) \in X$.

1. Give an example of an additive set.
2. Show that every member of A is in every additive set.
3. Show that the intersection of a set of additive sets is an additive set.
4. Show that there is a unique smallest additive set (i.e. an additive set which is a subset of every additive set).

Let B be this smallest additive set.
5. Show that every member of A is in B.
6. Conversely show that if $(x, y, z) \in B$ then $z=x+y$. Hint: Proceed by induction on y. Assume $z \neq x+y$. Show that $B \backslash\{(x, y, z)\}$ is an additive set.
II. Inspired from the above question, show that the multiplication is a function from $\mathbb{N} \times \mathbb{N}$ into \mathbb{N}, i.e. to show that the collection $A=\left\{(x, y, z) \in \mathbb{N}^{3}: z=x y\right\}$ is in fact a set.

