Math 111 (Set Theory)

Final Exam (on Ordered Sets) June, 2001 Ali Nesin

Recall that a set together with a binary relation < is called an **ordered set** if $\forall x \neg (x < x)$ $\forall x \forall y \forall z ((x < y \land y < z) \rightarrow x < z)$

The set of real numbers \mathbb{R} and its subsets (like \mathbb{Q} , \mathbb{Z} , \mathbb{N} , $\mathbb{Q}^{>0}$, $\mathbb{R}^{>0}$) will be considered as ordered sets (ordered with the natural order <).

If S is a set, its set of subsets will be denoted by $\wp(S)$. We will consider $\wp(S)$ as a set ordered by inclusion.

Let (X, <) be an ordered set. A subset A of X is called **dense**¹ in X, if for all x < y in X, there is an $a \in A$ such that x < a < y.

1. Is \mathbb{Z} dense in \mathbb{Q} ? Why?

Answer. No. Because, for example, there is no element of \mathbb{Z} between 1/4 and 3/4.

2. Let *S* be a nonemty set. Show that $\mathscr{O}(S)$ has no dense subset. Answer. If $x \in X$, then there is no subset between \emptyset and $\{x\}$.

Let $A = \{q^2 : q \in \mathbb{Q}\}.$ 3. Is A dense in A? Answer. Yes. If $p^2 < q^2$, then $(p+q)^2/4$ is between them.

4. Is A dense in $\mathbb{Q}^{>0}$? (2 pts.)

Answer. Yes. Let $0 be rational numbers. Since <math>\mathbb{Q}$ is dense in \mathbb{R} , there is an $r \in \mathbb{Q}$ such that $\sqrt{p} < r < \sqrt{q}$. Now $p < r^2 < q$ and $r^2 \in A$.

5. Is "to be dense in" a transitive relation between ordered sets? I.e., if $A \subseteq B \subseteq C \subseteq X$ and if A is dense in B and B dense in C, is it true that A is dense in C? (3 pts.)

Answer. Yes. Let $c_1 < c_2$ be in *C*. Then applying the density of *B* in *C* twice, we get two elements $b_1, b_2 \in B$ such that $c_1 < b_1 < b_2 < c_2$. Since *A* is dense in *B* we get an element *a* between b_1 and b_2 . Now $c_1 < a < c_2$ and this shows that *a* is dense in *C*.

6. Is the set $B = \{x/y \in \mathbb{Q} : x, y \in \mathbb{Z} \text{ are prime to each other and } y \text{ is odd} \}$ dense in \mathbb{Q} ?

Answer. Let $p < q \in \mathbb{Q}$. Let *n* be such that $1/3^n < q - p$. Then there is a maximal natural number *a* such that $a/3^n \le p$. Thus $(a+1)/3^n > p$. Also $(a+1)/3^n \le p + 1/3^n < p$.

¹ This is not a standard definition.

p + (q - p) = q. Thus $p < (a+1)/3^n < q$. Since $(a+1)/3^n \in B$, this shows that B is dense in \mathbb{Q} .

7. Is it true that the intersection of two dense subsets of an ordered set is always dense?

Answer. No. Take \mathbb{R} as the ordered set. Then \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are both dense in \mathbb{R} and their intersection, being empty, cannot be dense in \mathbb{R} .

A morphism *f* from an ordered set (X, <) into an ordered set (Y, \prec) is a map $f : X \to Y$ such that for all $a, b \in X, a < b$ iff $f(a) \prec f(b)$.

In case X = Y and the orders are the same (i.e. $\langle = \langle \rangle$), a bijective morphism is called an **automorphism**. For example, the identity map is always an automorphism.

8. Show that the inverse map of an automorphism is also an automorphism. **Answer.** This is clear from the definition: Let $c, d \in X$. Then $f^{-1}(c) < f^{-1}(d)$ iff $c = f(f^{-1}(c)) < f(f^{-1}(d)) = d$.

9. Show that the composition of two morphisms is also a morphism. **Answer.** Clear.

10. Let *a* and $b \in \mathbb{Q}$. What are the necessary and sufficient conditions on *a* and *b* for the map $\varphi_{a,b} : \mathbb{Q} \to \mathbb{Q}$ defined by $\varphi_{a,b}(x) = ax + b$ to be a morphism? Compute $\varphi_{a,b} \circ \varphi_{c,d}$. Find *e*, *f* such that $\varphi_{a,b} \circ \varphi_{c,d} = \varphi_{e,f}$.

Answer. Part 1. Note first that $\varphi_{a,b}(x) \in \mathbb{Q}$ for $x \in \mathbb{Q}$, so that $\varphi_{a,b}$ is really a map from \mathbb{Q} into \mathbb{Q} . Second, note that $\varphi_{a,b}$ is a morphism iff " $x < y \Leftrightarrow \varphi_{a,b}(x) < \varphi_{a,b}(y) \Leftrightarrow ax < ay$ " for all x and y, and this is equivalent to a > 0. (This last condition makes $\varphi_{a,b}$ an automorphism).

Part 2. $(\varphi_{a,b} \circ \varphi_{c,d})(x) = \varphi_{a,b}(\varphi_{c,d}(x)) = \varphi_{a,b}(cx + d) = a(cx + d) + b = acx + ad + b$ = $\varphi_{(ac, ad + b)}(x)$ for all $x \in \mathbb{Q}$. Thus $\varphi_{a,b} \circ \varphi_{c,d} = \varphi_{(ac, ad + b)}$.

11. Define the function $f: \mathbb{Q}^{>0} \to \mathbb{Q}$ as follows: $f(q) = \begin{pmatrix} -1/q \text{ if } 0 < q \le 1 \\ q - 2 \text{ if } 1 \ge q \end{cases}$

Show that f is an automorphism.

Answer. Note first that *f* is well-defined since f(1) = -1 whether we apply the first or the second part of the definition. The interval (0, 1] is mapped under *f* bijectively into the interval $(-\infty, -1]$ and the interval $[1, \infty)$ into $[-1, \infty)$. It follows from some simple observations that both pieces are order preserving.

12. Let f be an automorphism of X. Assume X has a least element, say a. Show that f(a) is also a least element of X.

Answer. Assume y < f(a). Let $x \in X$ be such that f(x) = a. Then f(x) = y < f(a). Since *f* is a morphism, we must have x < a, theis contradicts the fact that *a* is a least element of *X*. Thus there is no such *y* and f(a) is also a least element of *X*.

13. Let *f* be an automorphism of *X*. Assume *X* has an element *a* such that $\{x \in X : a < x\}$ is singleton set. Show that f(a) has the same property.

Answer. Let *b* the only element which is greater than *a*. Since a < b, we have f(a) < f(b). We will show that f(b) is the only element which is greater than f(a). Assume f(a) < y. Let *x* be such that f(x) = y. Then, since f(a) < f(x), we have a < x. Thus x = b and so y = f(x) = f(b).

14. Find all automorphism of $\wp(2)$ (here $2 = \{0, 1\}$).

Answer. Let φ be an automorphism of $\wp(2)$. Since \varnothing is the unique smallest element, by number 12, $\varphi(\varnothing) = \varnothing$. For a similar reason (since 2 is the largest element) $\varphi(2) = 2$. Then φ must permute the elements {0} and {1} of $\wp(2)$. Thus, φ either is identity or interchanges {0} and {1} and keeps the rest fixed.

15. Find all automorphism of $\wp(3)$. **Answer.** There are six of them, one for each permutation of the set $3 = \{0, 1, 2\}$.

16. Let *S* be a set and let *f* be a bijection of *S*. Define $\varphi_f : \wp(S) \to \wp(S)$ by $\varphi_f(A) = f(A)$. Show that φ_f is an automorphism of $\wp(S)$. What is $\varphi_f \circ \varphi_g$? Conversely, show that any automorphism of $\wp(S)$ is of the form φ_f for some bijection *f* of *S*.

Answer. Part 1. For $A, B \in \mathcal{O}(S), A \subset B$ iff $f(A) \subset f(B)$ iff $\varphi_f(A) \subset \varphi_f(A)$. So φ_f is a morphism. Since f is a bijection, φ_f is a bijection as well. Thus φ_f is an automorphism of $\mathcal{O}(S)$.

Part 2. For all $A \in \mathcal{O}(S)$, $(\varphi_f \circ \varphi_g)(A) = \varphi_f(\varphi_g(A)) = \varphi_f(g(A)) = f(g(A)) = (f \circ g)(A)$ = $\varphi_{f \circ g}(A)$. Thus $\varphi_f \circ \varphi_g = \varphi_{f \circ g}$.

Part 3. Singleton subsets of *S* have only one element smaller than them in $\mathcal{O}(S)$, namely \mathcal{O} , and the singleton sets are the only elements of $\mathcal{O}(S)$ with this property. As in number 13, one can show that an automorphism φ of $\mathcal{O}(S)$ permutes such subsets of *S*. Define $f: S \to S$ by the rule f(x) = y iff $\varphi(\{x\}) = \{y\}$. Then $\varphi(\{x\}) = \{f(x)\}$. We claim that $\varphi = \varphi_f$. Let $A \in \mathcal{O}(S)$. If $x \in A$, then $\{x\} \leq A$ and so $\{f(x)\} = \varphi(\{x\}) \leq \varphi(A)$. It follows that $f(A) \subseteq \varphi(A)$. Conversely, let $b \in \varphi(A)$. Let *a* be such that f(a) = b. Then $\varphi(\{a\}) = \{f(a)\} = \{b\} \leq \varphi(A)$. Thus $\{a\} \leq A$, i.e. $a \in A$ and $b = f(a) \in f(A)$.

17. Let (X, <) be a well-ordered set. Show that any morphism $f : X \to X$ satisfies $f(x) \ge x$ for all $x \in X$.

Answer. Assume not. Let *x* be the least element of *X* that satisfies f(x) < x. Since *f* is a morphism f(f(x)) < f(x). On the other hand, since f(x) < x, by the minimality of x, $f(f(x)) \ge f(x)$, this is a contradiction.

18. Find all automorphisms of \mathbb{N} .

Answer. I claim that $Id_{\mathbb{N}}$ is the only automorphism of \mathbb{N} . Let φ be an automorphism of \mathbb{N} . We will proceed by induction to show that $\varphi(n) = n$. By

number 12, $\varphi(0) = 0$. Assume $\varphi(n) = n$. By number 17, $\varphi(n+1) \ge n + 1$. If $\varphi(n+1) > n + 1$, consider the element *x* such that $\varphi(x) = n + 1$. We have $\varphi(n+1) > n + 1 = \varphi(x) > n = \varphi(n)$. Thus $\varphi(n+1) > \varphi(x) > \varphi(n)$ and so n + 1 > x > n, but there is no such element *x* in \mathbb{N} . Thus $\varphi(n+1) = n + 1$.

19. Find all automorphisms of \mathbb{Z} .

Answer. I claim that the only automorphisms of \mathbb{Z} are given by translations φ_a (for $a \in \mathbb{Z}$) which are defined by $\varphi_a(x) = x + a$. Note first that these are automorphisms since they preserve the order and $\varphi_a^{-1} = \varphi_{-a}$. Next, take any automorphism φ of \mathbb{Z} . Set $a = \varphi(0)$. Then $\varphi_{-a} \circ \varphi$ is an automorphism (by number 9) and it sends 0 to 0. We claim that an automorphism ψ of \mathbb{Z} that sends 0 to 0 is the identity map. Since $\psi(0) = 0$, ψ must send \mathbb{N} to \mathbb{N} , thus, by number 18, the map ψ restricted to \mathbb{N} must be the identity map. As in number 18, one can show that $\psi(-a) = -a$ for all a > 0. Thus ψ is the identity map. In particular $\varphi_{-a} \circ \varphi = \mathrm{Id}_{\mathbb{Z}}$, and so $\varphi = \varphi_{-a}^{-1} = \varphi_a$.

20. Find a morphism from \mathbb{Z} into \mathbb{Z} which is not an automorphism. **Answer.** $\varphi(x) = 2x$ is such an example.

A surjective morphism is called **isomorphism**. Two ordered sets are called **isomorphic** if there is an isomorphism between them.

21. Are \mathbb{Z} and \mathbb{Q} isomorphic? Answer. No, because \mathbb{Q} is dense and not \mathbb{Z} .

22. Are $\mathbb{R}^{\geq 0}$ and \mathbb{R} isomorphic? Answer. No, because $\mathbb{R}^{\geq 0}$ has a least element and not \mathbb{R} .

23. Are $\mathbb{R}^{>0}$ and \mathbb{R} isomorphic? (4 pts.)

Answer. Yes, the map $x \to e^x$ is one of the several automorphisms from \mathbb{R} onto $\mathbb{R}^{>0}$.

24. Are the open interval (0, 1) and \mathbb{R} isomorphic? (5 pts.) **Answer.** Yes.

The map $x \to e^x$ is an automorphism from \mathbb{R} onto $\mathbb{R}^{>0}$. The map $x \to -1/(1+x^2)$ is an automorphism from $\mathbb{R}^{>0}$ onto (-1, 0). The map $x \to x + 1$ is an automorphism from (-1, 0) onto (0, 1). Compose these, to get an automorphism from \mathbb{R} onto (0, 1). One finds $f(x) = e^{2x}/(1+e^{2x})$

25. Show that \mathbb{Q} has uncountably many automorphisms. Answer. Note first that for any $k, a, b \in \mathbb{Q}$, if a < b, by number 10, the map

$$x \mapsto a - k(b - a) + (b - a)x$$

is an automorphism from the interval [k, k + 1] onto the interval [a, b]. Let $\sigma = (a_n)_{n \in \mathbb{N}}$ be any strictly increasing sequence of natural numbers such that $q_0 = 0$. Define $f_{\sigma} : \mathbb{Q} \to \mathbb{Q}$ as follows:

$$f_{\sigma}(x) = \begin{cases} x & \text{if } x < 0\\ a_n + (b_n - a_n)(x - n) & \text{if } n \le x \le n + 1 \end{cases}$$

Then f_{σ} is an automorphism of \mathbb{Q} . Thus there are at least as many automorphisms as strictly increasing sequences of natural numbers. But there are as many strictly increasing sequence of natural numbers whose first element is 0 as there are infinite subsets of $\mathbb{N} \setminus \{0\}$. Since the number of finite subsets of $\mathbb{N} \setminus \{0\}$ is countable (prove it!), there are uncountably many infinite sequences of \mathbb{N} whose first term is 0.

26. Order $\mathbb{N} \times \mathbb{N}$ as follows: $(x, y) \le (z, t)$ iff $x \le z$ and $y \le t$ (then define (x, y) < (z, t) iff $(x, y) \le (z, t)$ and $(x, y) \ne (z, t)$). Show that the map $\alpha : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ defined by $\alpha(x, y) = (y, x)$ is an automorphism of $\mathbb{N} \times \mathbb{N}$. Show that Id_N and α are the only automorphisms of $\mathbb{N} \times \mathbb{N}$.

Answer. The map α is easily seen to be an automorphism of $\mathbb{N} \times \mathbb{N}$. Let φ be any automorphism of $\mathbb{N} \times \mathbb{N}$. Since (0, 0) is the only smallest element, $\varphi(0, 0) = (0, 0)$. Since (1, 0) and (0, 1) are the only elements of $\mathbb{N} \times \mathbb{N}$ which are just greater than (0, 0), φ must either fix or interchange them. By composing with α if necessary, we may assume that φ fixes (0, 0), (1, 0) and (0, 1). We will show that such a φ must be the identity. We proceed by induction on x + y to show that $\varphi(x, y) = (x, y)$. By induction $\varphi(x, y - 1) = (x, y - 1)$ and $\varphi(x - 1, y) = (x - 1, y)$. There are only two elements which are just greater than (x, y - 1) and these are (x + 1, y) and (x, y). Similarly there are only two elements which are just greater than (x, y) is the only element which is just greater than both (x, y - 1) and (x - 1, y). Thus (x, y) must be fixed as well.

27. Order $\mathbb{Z} \times \mathbb{Z}$ as above. Let $a, b \in \mathbb{Z}$. Show that the map $\tau_{a,b}$ defined by $\tau_{a,b}(x, y) = (x + a, y + b)$

defines an automorphism of $\mathbb{Z} \times \mathbb{Z}$. Show that the set Aut $(\mathbb{Z} \times \mathbb{Z})$ of automorphisms of $\mathbb{Z} \times \mathbb{Z}$ is

$$\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z}) = \{\tau_{a,b} : a, b \in \mathbb{Z}\} \cup \{\alpha \circ \tau_{a,b} : a, b \in \mathbb{Z}\}$$

where α is defined as above.

Answer. The first part is easy. Let φ be an automorphism of $\mathbb{Z} \times \mathbb{Z}$. Let $\varphi(0, 0) = (a, b)$. Then $\tau_{(-a, -b)} \circ \varphi$ is an automorphism that sends (0, 0) to (0, 0). Thus it sends $\mathbb{N} \times \mathbb{N}$ onto itself. It follows that its restriction to $\mathbb{N} \times \mathbb{N}$ is an automorphism of $\mathbb{N} \times \mathbb{N}$. By number 26, its restriction to $\mathbb{N} \times \mathbb{N}$ is either $\mathrm{Id}_{\mathbb{N} \times \mathbb{N}}$ or α . Thus either $\tau_{(-a, -b)} \circ \varphi$ or $\alpha \circ \tau_{(-a, -b)} \circ \varphi$ is identity on $\mathbb{N} \times \mathbb{N}$. Then as in number 26, one can show that such an automorphism is identity on $\mathbb{Z} \times \mathbb{Z}$. It follows $\varphi = \tau_{(-a, -b)}$ or $\varphi = \tau_{(-a, -b)} \circ \varphi = \tau_{(-a, -b)}$.