Math 111 (Set Theory)
Final Exam (on Ordered Sets)
June, 2001
Ali Nesin

Recall that a set together with a binary relation < is called an ordered set if $\forall x \neg(x<x)$
$\forall x \forall y \forall z((x<y \wedge y<z) \rightarrow x<z)$
The set of real numbers \mathbb{R} and its subsets (like $\mathbb{Q}, \mathbb{Z}, \mathbb{N}, \mathbb{Q}^{>0}, \mathbb{R}^{>0}$) will be considered as ordered sets (ordered with the natural order $<$).
If S is a set, its set of subsets will be denoted by $\wp(S)$. We will consider $\wp(S)$ as a set ordered by inclusion.

Let $(X,<)$ be an ordered set. A subset A of X is called dense ${ }^{\mathbf{1}}$ in X, if for all $x<y$ in X, there is an $a \in A$ such that $x<a<y$.

1. Is \mathbb{Z} dense in \mathbb{Q} ? Why?

Answer. No. Because, for example, there is no element of \mathbb{Z} between $1 / 4$ and 3/4.
2. Let S be a nonemty set. Show that $\wp(S)$ has no dense subset.

Answer. If $x \in X$, then there is no subset between \varnothing and $\{x\}$.
Let $A=\left\{q^{2}: q \in \mathbb{Q}\right\}$.
3. Is A dense in A ?

Answer. Yes. If $p^{2}<q^{2}$, then $(p+q)^{2} / 4$ is between them.
4. Is A dense in $\mathbb{Q}^{>0}$? (2 pts. $)$

Answer. Yes. Let $0<p<q$ be rational numbers. Since \mathbb{Q} is dense in \mathbb{R}, there is an $r \in \mathbb{Q}$ such that $\sqrt{ } p<r<\sqrt{ } q$. Now $p<r^{2}<q$ and $r^{2} \in A$.
5. Is "to be dense in" a transitive relation between ordered sets? I.e., if $A \subseteq B \subseteq$ $C \subseteq X$ and if A is dense in B and B dense in C, is it true that A is dense in C ? (3 pts.)
Answer. Yes. Let $c_{1}<c_{2}$ be in C. Then applying the density of B in C twice, we get two elements $b_{1}, b_{2} \in B$ such that $c_{1}<b_{1}<b_{2}<c_{2}$. Since A is dense in B we get an element a between b_{1} and b_{2}. Now $c_{1}<a<c_{2}$ and this shows that a is dense in C.
6. Is the set $B=\{x / y \in \mathbb{Q}: x, y \in \mathbb{Z}$ are prime to each other and y is odd $\}$ dense in \mathbb{Q} ?
Answer. Let $p<q \in \mathbb{Q}$. Let n be such that $1 / 3^{n}<q-p$. Then there is a maximal natural number a such that $a / 3^{n} \leq p$. Thus $(a+1) / 3^{n}>p$. Also $(a+1) / 3^{n} \leq p+1 / 3^{n}<$

[^0]$p+(q-p)=q$. Thus $p<(a+1) / 3^{n}<q$. Since $(a+1) / 3^{n} \in B$, this shows that B is dense in \mathbb{Q}.
7. Is it true that the intersection of two dense subsets of an ordered set is always dense?

Answer. No. Take \mathbb{R} as the ordered set. Then \mathbb{Q} and $\mathbb{R} \backslash \mathbb{Q}$ are both dense in \mathbb{R} and their intersection, being empty, cannot be dense in \mathbb{R}.

A morphism f from an ordered set $(X,<)$ into an ordered set (Y, \prec) is a map $f: X$
$\rightarrow Y$ such that for all $a, b \in X, a<b$ iff $f(a)<f(b)$.
In case $X=Y$ and the orders are the same (i.e. $<=<$), a bijective morphism is called an automorphism. For example, the identity map is always an automorphism.
8. Show that the inverse map of an automorphism is also an automorphism.

Answer. This is clear from the definition: Let $c, d \in X$. Then $f^{-1}(c)<f^{-1}(d)$ iff c $=f\left(f^{-1}(c)\right)<f\left(f^{-1}(d)\right)=d$.
9. Show that the composition of two morphisms is also a morphism.

Answer. Clear.
10. Let a and $b \in \mathbb{Q}$. What are the necessary and sufficent conditions on a and b for the map $\varphi_{a, b}: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $\varphi_{a, b}(x)=a x+b$ to be a morphism? Compute $\varphi_{a, b} \circ \varphi_{c, d}$. Find e, f such that $\varphi_{a, b} \circ \varphi_{c, d}=\varphi_{e, f}$.
Answer. Part 1. Note first that $\varphi_{a, b}(x) \in \mathbb{Q}$ for $x \in \mathbb{Q}$, so that $\varphi_{a, b}$ is really a map from \mathbb{Q} into \mathbb{Q}. Second, note that $\varphi_{a, b}$ is a morphism iff " $x<y \Leftrightarrow \varphi_{a, b}(x)<\varphi_{a, b}(y)$ $\Leftrightarrow a x<a y "$ for all x and y, and this is equivalent to $a>0$. (This last condition makes $\varphi_{a, b}$ an automorphism).
Part 2. $\left(\varphi_{a, b} \circ \varphi_{c, d}\right)(x)=\varphi_{a, b}\left(\varphi_{c, d}(x)\right)=\varphi_{a, b}(c x+d)=a(c x+d)+b=a c x+a d+b$ $=\varphi_{(a c, a d+b)}(x)$ for all $x \in \mathbb{Q}$. Thus $\varphi_{a, b} \circ \varphi_{c, d}=\varphi_{(a c, a d+b)}$.
11. Define the function $f: \mathbb{Q}^{>0} \rightarrow \mathbb{Q}$ as follows:

$$
f(q)=\left(\begin{array}{l}
-1 / q \text { if } 0<q \leq 1 \\
q-2 \text { if } 1 \geq q
\end{array}\right.
$$

Show that f is an automorphism.
Answer. Note first that f is well-defined since $f(1)=-1$ whether we apply the first or the second part of the definition. The interval $(0,1]$ is mapped under f bijectively into the interval $(-\infty,-1]$ and the interval $[1, \infty)$ into $[-1, \infty)$. It follows from some simple observations that both pieces are order preserving.
12. Let f be an automorphism of X. Assume X has a least element, say a. Show that $f(a)$ is also a least element of X.

Answer. Assume $y<f(a)$. Let $x \in X$ be such that $f(x)=a$. Then $f(x)=y<f(a)$. Since f is a morphism, we must have $x<a$, theis contradicts the fact that a is a least element of X. Thus there is no such y and $f(a)$ is also a least element of X.
13. Let f be an automorphism of X. Assume X has an element a such that $\{x \in X$: $a<x\}$ is singleton set. Show that $f(a)$ has the same property.
Answer. Let b the only element which is greater than a. Since $a<b$, we have $f(a)$ $<f(b)$. We will show that $f(b)$ is the only element which is greater than $f(a)$. Assume $f(a)<y$. Let x be such that $f(x)=y$. Then, since $f(a)<f(x)$, we have $a<x$. Thus $x=b$ and so $y=f(x)=f(b)$.
14. Find all automorphism of $\wp(2)$ (here $2=\{0,1\}$).

Answer. Let φ be an automorphism of $\wp(2)$. Since \varnothing is the unique smallest element, by number $12, \varphi(\varnothing)=\varnothing$. For a similar reason (since 2 is the largest element) $\varphi(2)=2$. Then φ must permute the elements $\{0\}$ and $\{1\}$ of $\wp(2)$. Thus, φ either is identity or interchanges $\{0\}$ and $\{1\}$ and keeps the rest fixed.
15. Find all automorphism of $\wp(3)$.

Answer. There are six of them, one for each permutation of the set $3=\{0,1,2\}$.
16. Let S be a set and let f be a bijection of S. Define $\varphi_{f}: \wp(S) \rightarrow \wp(S)$ by $\varphi_{f}(A)$ $=f(A)$. Show that φ_{f} is an automorphism of $\wp(S)$. What is $\varphi_{f} \circ \varphi_{g}$? Conversely, show that any automorphism of $\wp(S)$ is of the form φ_{f} for some bijection f of S.
Answer. Part 1. For $A, B \in \wp(S), A \subset B$ iff $f(A) \subset f(B)$ iff $\varphi_{f}(A) \subset \varphi_{f}(A)$. So φ_{f} is a morphism. Since f is a bijection, φ_{f} is a bijection as well. Thus φ_{f} is an automorphism of $\wp(S)$.
Part 2. For all $A \in \wp(S),\left(\varphi_{f} \circ \varphi_{g}\right)(A)=\varphi_{f}\left(\varphi_{g}(A)\right)=\varphi_{f}(g(A))=f(g(A))=(f \circ g)(A)$ $=\varphi_{f \circ g}(A)$. Thus $\varphi_{f} \circ \varphi_{g}=\varphi_{f \circ g}$.
Part 3. Singleton subsets of S have only one element smaller than them in $\wp(S)$, namely \varnothing, and the singleton sets are the only elements of $\wp(S)$ with this property. As in number 13, one can show that an automorphism φ of $\wp(S)$ permutes such subsets of S. Define $f: S \rightarrow S$ by the rule $f(x)=y$ iff $\varphi(\{x\})=\{y\}$. Then $\varphi(\{x\})=$ $\{f(x)\}$. We claim that $\varphi=\varphi_{f}$. Let $A \in \wp(S)$. If $x \in A$, then $\{x\} \leq A$ and so $\{f(x)\}=$ $\varphi(\{x\}) \leq \varphi(A)$. It follows that $f(A) \subseteq \varphi(A)$. Conversely, let $b \in \varphi(A)$. Let a be such that $f(a)=b$. Then $\varphi(\{a\})=\{f(a)\}=\{b\} \leq \varphi(A)$. Thus $\{a\} \leq A$, i.e. $a \in A$ and $b=$ $f(a) \in f(A)$.
17. Let $(X,<)$ be a well-ordered set. Show that any morphism $f: X \rightarrow X$ satisfies $f(x) \geq x$ for all $x \in X$.
Answer. Assume not. Let x be the least element of X that satisfies $f(x)<x$. Since f is a morphism $f(f(x))<f(x)$. On the other hand, since $f(x)<x$, by the minimality of $x, f(f(x)) \geq f(x)$, this is a contradiction.
18. Find all automorphisms of \mathbb{N}.

Answer. I claim that $\operatorname{Id}_{\mathbb{N}}$ is the only automorphism of \mathbb{N}. Let φ be an automorphism of \mathbb{N}. We will proceed by induction to show that $\varphi(n)=n$. By
number $12, \varphi(0)=0$. Assume $\varphi(n)=n$. By number $17, \varphi(n+1) \geq n+1$. If $\varphi(n+1)$ $>n+1$, consider the element x such that $\varphi(x)=n+1$. We have $\varphi(n+1)>n+1=$ $\varphi(x)>n=\varphi(n)$. Thus $\varphi(n+1)>\varphi(x)>\varphi(n)$ and so $n+1>x>n$, but there is no such element x in \mathbb{N}. Thus $\varphi(n+1)=n+1$.
19. Find all automorphisms of \mathbb{Z}.

Answer. I claim that the only automorphisms of \mathbb{Z} are given by translations φ_{a} (for $a \in \mathbb{Z}$) which are defined by $\varphi_{a}(x)=x+a$. Note first that these are automorphisms since they preserve the order and $\varphi_{a}^{-1}=\varphi_{-a}$. Next, take any automorphism φ of \mathbb{Z}. Set $a=\varphi(0)$. Then $\varphi_{-a} \circ \varphi$ is an automorphism (by number 9) and it sends 0 to 0 . We claim that an automorphism ψ of \mathbb{Z} that sends 0 to 0 is the identity map. Since $\psi(0)=0, \psi$ must send \mathbb{N} to \mathbb{N}, thus, by number 18 , the map ψ restricted to \mathbb{N} must be the identity map. As in number 18 , one can show that $\psi(-a)=-a$ for all $a>0$. Thus ψ is the identity map. In particular $\varphi_{-a} \circ \varphi=$ $\mathrm{Id}_{\mathbf{Z}}$, and so $\varphi=\varphi_{-a}^{-1}=\varphi_{a}$.
20. Find a morphism from \mathbb{Z} into \mathbb{Z} which is not an automorphism.

Answer. $\varphi(x)=2 x$ is such an example.
A surjective morphism is called isomorphism. Two ordered sets are called isomorphic if there is an isomorphism between them.
21. Are \mathbb{Z} and \mathbb{Q} isomorphic?

Answer. No, because \mathbb{Q} is dense and not \mathbb{Z}.
22. Are $\mathbb{R}^{\geq 0}$ and \mathbb{R} isomorphic?

Answer. No, because $\mathbb{R}^{\geq 0}$ has a least element and not \mathbb{R}.
23. Are $\mathbb{R}^{>0}$ and \mathbb{R} isomorphic? (4 pts.)

Answer. Yes, the map $x \rightarrow e^{x}$ is one of the several automorphisms from \mathbb{R} onto \mathbb{R} >0.
24. Are the open interval $(0,1)$ and \mathbb{R} isomorphic? (5 pts.)

Answer. Yes.
The map $x \rightarrow e^{x}$ is an automorphism from \mathbb{R} onto $\mathbb{R}^{>0}$.
The map $x \rightarrow-1 /\left(1+x^{2}\right)$ is an automorphism from $\mathbb{R}^{>0}$ onto $(-1,0)$.
The map $x \rightarrow x+1$ is an automorphism from $(-1,0)$ onto $(0,1)$.
Compose these, to get an automorphism from \mathbb{R} onto $(0,1)$. One finds $f(x)=$ $e^{2 x} /\left(1+e^{2 x}\right)$
25. Show that \mathbb{Q} has uncountably many automorphisms.

Answer. Note first that for any $k, a, b \in \mathbb{Q}$, if $a<b$, by number 10 , the map

$$
x \mapsto a-k(b-a)+(b-a) x
$$

is an automorphism from the interval $[k, k+1]$ onto the interval $[a, b]$. Let $\sigma=$ $\left(a_{n}\right)_{n \in \mathbf{N}}$ be any strictly increasing sequence of natural numbers such that $q_{0}=0$. Define $f_{\sigma}: \mathbb{Q} \rightarrow \mathbb{Q}$ as follows:

$$
f_{\sigma}(x)=\left\{\begin{array}{l}
x \quad \text { if } x<0 \\
a_{n}+\left(b_{n}-a_{n}\right)(x-n) \quad \text { if } n \leq x \leq n+1
\end{array}\right.
$$

Then f_{σ} is an automorphism of \mathbb{Q}. Thus there are at least as many automorphisms as strictly increasing sequences of natural numbers. But there are as many strictly increasing sequence of natural numbers whose first eleemnt is 0 as there are infinite subsets of $\mathbb{N} \backslash\{0\}$. Since the number of finite subsets of $\mathbb{N} \backslash\{0\}$ is countable (prove it!), there are uncountably many infinite sequences of \mathbb{N} whose first term is 0 .
26. Order $\mathbb{N} \times \mathbb{N}$ as follows: $(x, y) \leq(z, t)$ iff $x \leq z$ and $y \leq t$ (then define $(x, y)<(z$, $t)$ iff $(x, y) \leq(z, t)$ and $(x, y) \neq(z, t))$. Show that the map $\alpha: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \times \mathbb{N}$ defined by $\alpha(x, y)=(y, x)$ is an automorphism of $\mathbb{N} \times \mathbb{N}$. Show that $\operatorname{Id}_{\mathbb{N}}$ and α are the only automorphisms of $\mathbb{N} \times \mathbb{N}$.
Answer. The map α is easily seen to be an automorphism of $\mathbb{N} \times \mathbb{N}$. Let φ be any automorphism of $\mathbb{N} \times \mathbb{N}$. Since $(0,0)$ is the only smallest element, $\varphi(0,0)=(0,0)$. Since $(1,0)$ and $(0,1)$ are the only elements of $\mathbb{N} \times \mathbb{N}$ which are just greater than $(0,0), \varphi$ must either fix or interchange them. By composing with α if necessary, we may assume that φ fixes $(0,0),(1,0)$ and $(0,1)$. We will show that such a φ must be the identity. We proceed by induction on $x+y$ to show that $\varphi(x, y)=(x$, y). By induction $\varphi(x, y-1)=(x, y-1)$ and $\varphi(x-1, y)=(x-1, y)$. There are only two elements which are just greater than $(x, y-1)$ and these are $(x+1, y)$ and $(x$, $y)$. Similarly there are only two elements which are just greater than $(x-1, y)$ and these are $(x, y+1)$ and (x, y). Thus (x, y) is the only element which is just greater than both $(x, y-1)$ and $(x-1, y)$. Thus (x, y) must be fixed as well.
27. Order $\mathbb{Z} \times \mathbb{Z}$ as above. Let $a, b \in \mathbb{Z}$. Show that the map $\tau_{a, b}$ defined by

$$
\tau_{a, b}(x, y)=(x+a, y+b)
$$

defines an automorphism of $\mathbb{Z} \times \mathbb{Z}$. Show that the set $\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})$ of automorphisms of $\mathbb{Z} \times \mathbb{Z}$ is

$$
\operatorname{Aut}(\mathbb{Z} \times \mathbb{Z})=\left\{\tau_{a, b}: a, b \in \mathbb{Z}\right\} \cup\left\{\alpha \circ \tau_{a, b}: a, b \in \mathbb{Z}\right\}
$$

where α is defined as above.
Answer. The first part is easy. Let φ be an automorphism of $\mathbb{Z} \times \mathbb{Z}$. Let $\varphi(0,0)=$ (a, b). Then $\tau_{(-a,-b)} \circ \varphi$ is an automorphism that sends $(0,0)$ to $(0,0)$. Thus it sends $\mathbb{N} \times \mathbb{N}$ onto itself. It follows that its restriction to $\mathbb{N} \times \mathbb{N}$ is an automorhism of $\mathbb{N} \times \mathbb{N}$. By number 26, its restriction to $\mathbb{N} \times \mathbb{N}$ is either $\operatorname{Id}_{\mathbb{N} \times \mathbb{N}}$ or α. Thus either $\tau_{(-a,-b)} \circ \varphi$ or $\alpha \circ \tau_{(-a,-b)} \circ \varphi$ is identity on $\mathbb{N} \times \mathbb{N}$. Then as in number 26 , one can show that such an automorphism is identity on $\mathbb{Z} \times \mathbb{Z}$. It follows $\varphi=\tau_{(-a,-b)}$ or $\varphi=$ $\tau_{(-a,-b)} \circ \alpha=\alpha \circ \tau_{(-a,-b)}$.

[^0]: ${ }^{1}$ This is not a standard definition.

