Math 111

Ali Nesin

Homework on Functions (According to Naïve Set Theory)
October 1999

Let X and Y be two sets. Naively speaking¹, a function from X into Y is a "rule" that associates to **each** element x of X a **unique** element y of Y. If we denote by f a function from X into Y, the element y of Y that is associated to the element x of X is denoted by f(x). The element f(x) of Y is called the *value* of the function f at x.

Example 1. Let $X = Y = \mathbb{N}$, the set of natural numbers, and let us associate to a natural number x, the natural number 2x + 1. If we denote by f this function, we have f(x) = 2x + 1. For example, f(3) = 7, f(f(3)) = f(7) = 15.

Example 2. The rule that associates x/2 to a natural number x is **not** a function from \mathbb{N} into \mathbb{N} , because x/2 is not always a natural number. On the other hand the same rule gives rise to a function from \mathbb{N} into the set \mathbb{Q} of rational numbers.

Example 3. The rule that associates to each $x \in \mathbb{N}$, a real number y such that $y^2 = x$ is **not** a function from \mathbb{N} into \mathbb{R} , because, except for x = 0, there are two distinct solutions of the equation $y^2 = x$. In other words, the value y is not always unique.

1. How many functions are there from a set of n elements into a set of m elements?

If f is a function from X into Y and if A is a subset of X, we denote by f(A) the set values of f at the elements of A. More formally,

$$f(A) = \{ y \in Y : y = f(a) \text{ for some } a \text{ in } A \}.$$

- 2. Let f be as in Example 1,
- **2a.** Find $f(\mathbb{N})$.
- **2b.** Find $f(f(\mathbb{N}))$.
- **2c.** Find $f(f(f(\mathbb{N})))$.
- **2d.** Find $f(f...(f(\mathbb{N}))...)$. (Here there n f's. We denote this set by $f^n(\mathbb{N})$).

Let f be a function from X into Y and let A and B be two subsets of X.

- **3.** Show that if $A \subseteq B$, then $f(A) \subseteq f(B)$.
- **4.** Show that $f(A \cup B) = f(A) \cup f(B)$. The same equality holds of course for any finite set of subsets.
- **5.** Show that $f(A \cap B) \subseteq f(A) \cap f(B)$. The same inclusion holds of course for any finite set of subsets.
- **6.** Show that $f(A \cap B)$ may be different from $f(A) \cap f(B)$. (You have to find examples of X, Y, f, A and B).

¹ Later on, we will introduce functions formally. As everything else in formal set theory, a function will be a set.

- **7.** What can you say about the relationship between $f(A \setminus B)$ and $f(A) \setminus f(B)$?
- **8.** Show that $f(\emptyset) = \emptyset$.

Let $(A_i)_{i \in I}$ be a family of subsets of X. Naively speaking, this means that I is a set and that for each element i of I, a subset A_i of X is given.

- **9.** Show that $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$ This is generalization of question #4. 10. Show that $f(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} f(A_i)$. This is generalization of question #5.

From now on we assume that f is a function from the set X into itself, i.e. f is a function from X into X. We say that a subset A of X is **f-closed** if $f(A) \subseteq A$. The sets X and \emptyset are of course f-closed.

- 11. Show that if A is an f closed subset of X, then so is f(A).
- **12.** Show that $\bigcup_{n \in \mathbb{N}} f^n(A)$ is an f-closed subset of X. (By convention, $f^0(A) = A$. For n > 0, the meaning of $f^n(A)$ should be clear from question #2d.
- - **13.** Is $\bigcap_{n \in \mathbb{N}} f^n(A)$ is an *f*-closed subset for any function *f* and subset *A* of *X*?
- **14.** Show that the intersection of *f*-closed sets is *f*-closed. In other words, show that if each A_i is an f-closed subset of X for each $i \in I$, then $\bigcap_{i \in I} f(A_i)$ is also an f-closed subset of X.
- **15.** Let A be a subset of X. Show that the intersection of all the f-closed subsets of X that contain A is the unique smallest f-closed subset of X that contains A. You have to show that:
- **15a.** The intersection of all the f-closed subsets of X that contain A is an fclosed subset of X.
- **15b.** The intersection of all the *f*-closed subsets of *X* that contain *A* contains A.
- **15c.** If B is an f-closed subset of X that contains A, then B contains the intersection of all the f-closed subsets of X that contain A.

Let A* denote this unique subset.

16. Show that
$$A^* = \bigcup_{n \in \mathbb{N}} f^n(A)$$
.

- **17.** Let *f* be as in Example 1. Show that $\{0\}^* = \{2^n 1 : n \in \mathbb{N}\}.$
- **18.** Let f be as in Example 1. Find an equality as above for $\{1\}^*$.
- **19.** Let f be as in Example 1. Find an equality as above for $\{2\}^*$.
- **20.** Show that the intersection of *f*-closed sets is *f*-closed.
- **21.** Let *A* be a subset of *X*. Show that the union of all the *f*-closed subsets of A is the unique largest f-closed subset of A. Let A° denote this unique set.
 - **22.** Let A be the set of natural numbers not divisible by 3. What is A° ?