Math 111

Ali Nesin Homework on Functions (According to Naïve Set Theory) October 1999

Let X and Y be two sets. Naively speaking ${ }^{1}$, a function from X into Y is a "rule" that associates to each element x of X a unique element y of Y. If we denote by f a function from X into Y, the element y of Y that is associated to the element x of X is denoted by $f(x)$. The element $f(x)$ of Y is called the value of the function f at x.

Example 1. Let $X=Y=\mathbb{N}$, the set of natural numbers, and let us associate to a natural number x, the natural number $2 x+1$. If we denote by f this function, we have $f(x)=2 x+1$. For example, $f(3)=7, f(f(3))=f(7)=15$.

Example 2. The rule that associates $x / 2$ to a natural number x is not a function from \mathbb{N} into \mathbb{N}, because $x / 2$ is not always a natural number. On the other hand the same rule gives rise to a function from \mathbb{N} into the set \mathbb{Q} of rational numbers.

Example 3. The rule that associates to each $x \in \mathbb{N}$, a real number y such that $y^{2}=x$ is not a function from \mathbb{N} into \mathbb{R}, because, except for $x=0$, there are two distinct solutions of the equation $y^{2}=x$. In other words, the value y is not always unique.

1. How many functions are there from a set of n elements into a set of m elments?

If f is a function from X into Y and if A is a subset of X, we denote by $f(A)$ the set values of f at the elements of A. More formally,

$$
f(A)=\{y \in Y: y=f(a) \text { for some } a \text { in } A\} .
$$

2. Let f be as in Example 1,

2a. Find $f(\mathbb{N})$.
2b. Find $f(f(\mathbb{N}))$.
2c. Find $f(f(f(\mathbb{N})))$.
2d. Find $f(f \ldots(f(\mathbb{N})) \ldots)$. (Here there $n f^{\prime}$ s. We denote this set by $f^{n}(\mathbb{N})$).
Let f be a function from X into Y and let A and B be two subsets of X.
3. Show that if $A \subseteq B$, then $f(A) \subseteq f(B)$.
4. Show that $f(A \cup B)=f(A) \cup f(B)$. The same equality holds of course for any finite set of subsets.
5. Show that $f(A \cap B) \subseteq f(A) \cap f(B)$. The same inclusion holds of course for any finite set of subsets.
6. Show that $f(A \cap B)$ may be different from $f(A) \cap f(B)$. (You have to find examples of X, Y, f, A and B).

[^0]7. What can you say about the relationship between $f(A \backslash B)$ and $f(A) \backslash f(B)$?
8. Show that $f(\varnothing)=\varnothing$.

Let $\left(A_{i}\right)_{i \in I}$ be a family of subsets of X. Naively speaking, this means that I is a set and that for each element i of I, a subset A_{i} of X is given.
9. Show that $f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)$ This is generalization of question \#4.
10. Show that $f\left(\bigcap_{i \in I} A_{i}\right) \subseteq \bigcap_{i \in I} f\left(A_{i}\right)$. This is generalization of question \#5.

From now on we assume that f is a function from the set X into itself, i.e. f is a function from X into X. We say that a subset A of X is f-closed if $f(A) \subseteq$ A. The sets X and \varnothing are of course f-closed.
11. Show that if A is an f closed subset of X, then so is $f(A)$.
12. Show that $\bigcup_{n \in \mathbf{N}} f^{n}(A)$ is an f-closed subset of X. (By convention, $f^{0}(A)=$ A. For $n>0$, the meaning of $f^{n}(A)$ should be clear from question \#2d.
13. Is $\bigcap_{n \in \mathrm{~N}} f^{n}(A)$ is an f-closed subset for any function f and subset A of X ?
14. Show that the intersection of f-closed sets is f-closed. In other words, show that if each A_{i} is an f-closed subset of X for each $i \in I$, then $\bigcap_{i \in I} f\left(A_{i}\right)$ is also an f-closed subset of X.
15. Let A be a subset of X. Show that the intersection of all the f-closed subsets of X that contain A is the unique smallest f-closed subset of X that contains A. You have to show that:

15a. The intersection of all the f-closed subsets of X that contain A is an f closed subset of X.

15b. The intersection of all the f-closed subsets of X that contain A contains A.

15c. If B is an f-closed subset of X that contains A, then B contains the intersection of all the f-closed subsets of X that contain A.

Let A^{*} denote this unique subset.
16. Show that $A^{*}=\bigcup_{n \in \mathrm{~N}} f^{n}(A)$.
17. Let f be as in Example 1. Show that $\{0\}^{*}=\left\{2^{n}-1: n \in \mathbb{N}\right\}$.
18. Let f be as in Example 1. Find an equality as above for $\{1\}$.
19. Let f be as in Example 1. Find an equality as above for $\{2\}$.
20. Show that the intersection of f-closed sets is f-closed.
21. Let A be a subset of X. Show that the union of all the f-closed subsets of A is the unique largest f-closed subset of A. Let A^{0} denote this unique set.
22. Let A be the set of natural numbers not divisible by 3 . What is A° ?

[^0]: ${ }^{1}$ Later on, we will introduce functions formally. As everything else in formal set theory, a function will be a set.

