# Math 111 (Set Theory) 

Second Midterm

Ali Nesin - Özlem Beyarslan
January 2000

1. Let $a \in \mathbb{Q}$ be fixed. We will say that two functions $f$ and $g$ from $\mathbb{Q}$ into $\mathbb{Q}$ have the same germ around $a$, and we write $f \equiv_{a} g$, if there is $\varepsilon \in \mathbb{Q}^{>0}$ such that $f(x)$ $=g(x)$ for all $x \in(a-\varepsilon, a+\varepsilon)$.

1a. Show that $\equiv_{a}$ is an equivalence relation on the set $\mathbb{Q} \mathbb{Q}$ of all functions from $\mathbb{Q}$ into $\mathbb{Q}$. For $f \in \mathbb{Q} \mathbb{Q}$, let $[f]$ denote the equivalence class of $f$ with respect to this equivalence relation.

1b. For $f$ and $g$ in $\mathbb{Q} \mathbb{Q}$, we define $f+g$ and $f g$ as functions from $\mathbb{Q}$ into $\mathbb{Q}$ as follows: For all $x \in \mathbb{Q}$,

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(f g)(x) & =f(x) g(x) .
\end{aligned}
$$

Show that if $f_{1} \equiv_{a} g_{1}$ and $f_{2} \equiv_{a} g_{2}$ then $f_{1}+f_{2} \equiv_{a} g_{1}+g_{2}$ and $f_{1} f_{2} \equiv_{a} g_{1} g_{2}$. It follows that one can define addition and multiplication on $\mathbb{Q} \mathbb{Q} / \equiv_{a}$.

1c. For $r \in \mathbb{Q}$, define $c_{r}: \mathbb{Q} \rightarrow \mathbb{Q}$ by $c_{r}(x)=r$ for all $x \in \mathbb{Q}$, i.e. $c_{r}$ is the constant function that takes always the value $r$. Show that the function $c: \mathbb{Q} \rightarrow \mathbb{Q} \mathbb{Q} / \equiv_{a}$ defined by $c(r)=\left[c_{r}\right]$ is one-to-one and that it satisfies the equalities

$$
\begin{aligned}
c(r+s) & =c(r)+c(s) \\
c(r s) & =c(r) c(s)
\end{aligned}
$$

for all $r, s \in \mathbb{Q}$.
1d. For $f \in \mathbb{Q} \mathbb{Q}$ show that the following two conditions are equivalent:
(i) For some $\varepsilon \in \mathbb{Q}^{>0}, f(x) \neq 0$ for all $x \in(a-\varepsilon, a+\varepsilon)$.
(ii) There is a $g \in \mathbb{Q} \mathbb{Q}$ such that $[f][g]=\left[c_{1}\right]$.

1e. Inspired by 1a define the equivalence relation $\equiv_{\infty}$.
2a. Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two rational sequences that converge to two different numbers. Show that $\left\{a_{n}: n \in \mathbb{N}\right\} \cap\left\{b_{n}: n \in \mathbb{N}\right\}$ is finite.

2b. Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two rational Cauchy sequences such that the set $\left\{a_{n}: n\right.$ $\in \mathbb{N}\} \cap\left\{b_{n}: n \in \mathbb{N}\right\}$ is infinite. Show that $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$.

2c. Let $\left(a_{n}\right)_{n}$ and $\left(b_{n}\right)_{n}$ be two Cauchy sequences such that the set $\{n \in \mathbb{N}$ : there is an $m$ such that $\left.a_{n}=b_{m}\right\}$ is infinite. Prove or disprove: $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=0$.
3. Let $A$ and $B$ be two sets of size $n$ and $m$ respectively. How many one-to-one functions are there from $A$ into $B$ ?

4a. Show that $\binom{n}{k}+\binom{n}{k+1}=\binom{n+1}{k+1}$ for all $n$ and $k$ such that $k<n$.

4b. Show that $(x+y)^{n}=\sum_{i=0}^{n}\binom{n}{i} x^{i} y^{n-i}$ for all $n \in \mathbb{N}$ and $x$ and $y \in \mathbb{Q}$. (Hint: By induction on $n$ ).

4c. Let $p$ be a prime number. Show that $p$ divides $\binom{p}{i}$ for all $i=1, \ldots, p-1$.
4d. Show that for all primes $p$ and natural numbers $n, p$ divides $n^{p}-n$. (Hint: By induction on $n$ ).

