Set Theory

First Midterm
November 1999
Ali Nesin
I. Recall the Peano Axioms:

PA1. The function $S: \omega \rightarrow \omega$ given by $S(x)=x^{+}=x \cup\{x\}$ is one-to-one.
PA2. $S(\omega)=\omega \backslash\{0\}$.
PA3. If $X \subseteq \omega$ is such that
a) $0 \in X$
b) if $x \in X$ then $S(x) \in X$
then $X=\omega$.
Recall also the definition of + and \times : For all $x, y \in \omega$,
S1. $x+0=x$
S2. $x+S(y)=S(x+y)$
P1. $x 0=0$
P2. $x y^{+}=x y+x$
I.1. Show that $x+y=y+x$ for all $x, y \in \omega$.
I.2. Show that $x y=y x$.
II. For this question, you may assume that you know the basic rules of arithmetic for the structure $(\omega,+, \times)$.

On the set $\omega \times \omega$ we define the relation \equiv as follows:

$$
(a, b) \equiv(c, d) \text { iff } a+d=b+c
$$

II.1. Show that this is an equivalence relation on $\omega \times \omega$.
II.2. Find the equivalence classes of $(0,0),(1,0),(0,1),(2,6),(1,5)$ and (a, b).
II.3. Show that if $(a, b) \equiv(c, d)$ and $\left(a^{\prime}, b^{\prime}\right) \equiv\left(c^{\prime}, d^{\prime}\right)$ then $\left(a+a^{\prime}, b+b^{\prime}\right) \equiv\left(c+c^{\prime}\right.$, $\left.d+d^{\prime}\right)$ and $\left(a a^{\prime}+b b^{\prime}, a b^{\prime}+b a^{\prime}\right) \equiv\left(c c^{\prime}+d d^{\prime}, c d^{\prime}+d c^{\prime}\right)$.
II.4. Let $[a, b]$ be the class of (a, b) and let $\mathbb{Z}=\omega \times \omega / \equiv$ be the set of equivalence relations. Say why question \#3 allows us to define + and \times on the set \mathbb{Z} as:

$$
\begin{gathered}
{[a, b]+[c, d]=[a+c, b+d]} \\
{[a, b] \times[c, d]=[a, b][c, d]=[a c+b d, a d+b c]}
\end{gathered}
$$

II.5. Show that there is a one-to-one map f from ω into \mathbb{Z} such that for all $x, y \in$ \mathbb{Z},

$$
\begin{aligned}
& f(x+y)=f(x)+f(y) \\
& f(x y)=f(x) f(y) .
\end{aligned}
$$

II.6. What do you think about \mathbb{Z} ?

Grading Policy: I.1. 30 pts.
I.2. 30 pts .
II.1. 8 pts.
II.2. 6 pts.
II.3. 12 pts.
II.4. 5 pts.
II.5. 15 pts.
II. 6.4 pts.

