Set Theory Final Exam

Math 111, 9 June 2000 Ali Nesin - Özlem Beyarslan

Write clearly and without using mathematical symbols like \forall , \exists , \Leftrightarrow etc.

1. Prove that for $n \in \mathbb{N}$, the set $\mathcal{D}(n)$ of subsets of *n* has 2^n elements. (**Hint:** You may proceed by induction on *n*).

2a. Show that a subset of \mathbb{R} which is closed under substraction is closed under addition.

2b. Does the converse of the above statement hold?

2c. Show that a subset of \mathbb{R} which is closed under substraction, squaring and dividing by 2 is closed under multiplication.

3. Let us call a subset *X* of \mathbb{R} square-closed if for all $x \in X$, $x^2 \in X$.

3a. Show that any subset A of \mathbb{R} is contained in a smallest square-closed set.

3b. Show that \mathbb{R} has a maximal square-closed subset that does not contain 1.

4. Let *X* be any set. Show that there is no one-to-one correspondance between *X* and the power set $\mathcal{D}(X)$ of *X*. (**Hint:** Assuming there is such a bijection *f* from *X* onto $\mathcal{D}(X)$, consider the set $A = \{x \in X : x \in f(x)\}$).

5. Define the set ℓ^{∞} to be the set of all bounded sequences of \mathbb{R} . Define the addition, the substraction and the multiplication of sequences componentwise.

5a. Show that ℓ^{∞} is closed under addition, substraction and multiplication.

5b. Show that there is a one-to-one map from \mathbb{R} into ℓ^{∞} that respects addition, substraction and multiplication, i.e. that there is a one-to-one map *i* from \mathbb{R} into ℓ^{∞} such that for all $x, y \in \ell^{\infty}$, i(x + y) = i(x) + i(y), i(x - y) = i(x) - i(y) and i(xy) = i(x)i(y).

For $x = (x_n)_n$ and $y = (y_n)_n$ in ℓ^{∞} , define $|x| = \sup_{n \in \mathbb{N}} |x_n|$ and the **distance** d(x, y) from *x* to *y* as d(x, y) = |x - y|.

5c. Show that for $x, y \in \ell^{\infty}$, d(x, y) = 0 iff x = y.

5d. Show that for $x, y \in \ell^{\infty}$, d(x, y) = d(y, x).

5e. Show that for $x, y, z \in \ell^{\infty}$, $d(x, z) \leq d(x, y) + d(y, z)$.

A sequence $(x_n)_n$ of elements of ℓ^{∞} (i.e. each $x_n = (x_{np})_p$ is a bounded sequence of real numbers) is called a Cauchy sequence if for all real numbers $\varepsilon > 0$ there is a natural number *N* such that for all $n, m > N, |x_n - x_m| < \varepsilon$.

5f. Show that if a sequence $(x_n)_n$ of elements of ℓ^{∞} is Cauchy then for all $p \in \mathbb{N}$, the sequence $(x_{np})_n$ of real numbers is Cauchy.

5g. Does the converse of the above statement hold?