Set Theory Math 111 Resit September 1999 Ali Nesin

Always justify your answer. A short answer of the form "yes" or "no" will not be accepted.

1. A subset *A* of an ordered set (X, <) is called **dense** in *X*, if for all x < y in *X*, there is an $a \in A$ such that x < a < y. Let $A = \{q^2 : q \in \mathbb{Q}\}$. Order *A* naturally (the induced order of \mathbb{Q}). Is *A* dense in \mathbb{Q} ? (5 pts.)

2. Let *X* and *Y* be two sets and $f: X \to Y$ be a function. Let $A_i \subseteq X$ and $B_j \subseteq I$

2a. Show that
$$f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i) . (4 \text{ pts.})$$

2b. Show that $f(\bigcap_{i \in I} A_i) \subseteq \bigcap_{i \in I} f(A_i) . (2 \text{ pts.})$
2c. Show that $f^{-1}(\bigcap_{j \in J} B_j) = \bigcap_{j \in J} f^{-1}(B_j) . (4 \text{ pts.})$
2d. Show that $f^{-1}(\bigcup_{j \in J} B_j) = \bigcup_{j \in J} f^{-1}(B_j) . (4 \text{ pts.})$

Υ.

2e. Does the reverse inclusion in #2b hold? Prove or give a counterexample. (4 pts.)

3. Find a map
$$f: \mathbb{R} \to \mathbb{R}$$
 such that $\bigcap_{i=1}^{n} f^{i}(\mathbb{R}) \neq \emptyset$ but $\bigcap_{i \in \mathbb{N}} f^{i}(\mathbb{R}) = \emptyset$. (8 pts.)

4. Let X be a nonempty subset of \mathbb{R} such that for $x, y \in X, x - y \in X$. 4a. Show that $0 \in X$. (1 pt.) 4b. Show that for $x \in X, -x \in X$ also. (1 pts.) 4c. Show that $x + y \in X$ for $x, y \in X$. (2 pts.) From now on assume further that for $x \in X, x^2 \in X$ also. 4d. Show that for $x, y \in X, 2xy \in X$ also. (3 pts.) 4e. Show that 2X is closed under +, - and \times . (4 pts.) 4f. Show that the relation $x \equiv y$ iff $x - y \in 2X$ defines an equivalence relation on X. (4 pts.)

5. We will call a subset *X* of \mathbb{R} square-closed if for all $x \in X$, $x^2 \in X$ also. Note that \emptyset and \mathbb{R} are square closed subsets of \mathbb{R} .

5a. Show that if Π is a set of square-closed subsets of \mathbb{R} , then $\cup \Pi$ and $\cap \Pi$ are square closed subsets of \mathbb{R} . (4 pts.)

5b. Let A be any subset of \mathbb{R} . Show that there is a smallest square-closed subset A^* that contains A. (4 pts.)

5c. Let A be any subset of \mathbb{R} . Show that there is a largest square-closed subset A° of A. (4 pts.)

5d. Prove or disprove: For any two subsets *A* and *B* of \mathbb{R} ,

$$A^* \cup B^* = (A \cup B)^*$$
$$A^* \cap B^* = (A \cap B)^*$$
$$A^{\circ} \cup B^{\circ} = (A \cup B)^{\circ}$$
$$A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ}$$

(12 pts.)

6. [Cantor-Schröder-Bernstein] Let A be a set and A' a subset of A. Assume that there is a bijection $f: A \to A'$ between A and A'. Let B be any set such that $A' \subseteq B \subseteq A$. The purpose of this exercise is to show that there is a bijection between B and A.

Let $Q = B \setminus A'$. Let $\Gamma = \{X \subseteq A : Q \cup f(X) \subseteq X\}$. Let $T = \cap \Gamma = \bigcap_{X \in \Gamma} X$. **6a**. Show that $T \in \Gamma$. (4 pts.) **6b**. Show that $Q \cup f(T) \in \Gamma$. (4 pts.) **6c**. Show that $Q \cup f(T) \in \Gamma$. (4 pts.) **6d**. Show that $T = Q \cup f(T)$. (Hint: Use a and b). (5 pts.) **6d**. Show that $B = T \cup (A' \setminus f(T))$. (Hint: Use c). (5 pts.) **6e**. Show that $T \cap (A' \setminus f(T)) = \emptyset$. (5 pts.) **6f**. Show that there is a bijection between *B* and *A*. (Hint: Use parts d and e). (5 pts.) pts.)