Set Theory

Math 111
Resit
September 1999
Ali Nesin
Always justify your answer. A short answer of the form "yes" or "no" will not be accepted.

1. A subset A of an ordered set $(X,<)$ is called dense in X, if for all $x<y$ in X, there is an $a \in A$ such that $x<a<y$. Let $A=\left\{q^{2}: q \in \mathbb{Q}\right\}$. Order A naturally (the induced order of \mathbb{Q}). Is A dense in \mathbb{Q} ? (5 pts .)
2. Let X and Y be two sets and $f: X \rightarrow Y$ be a function. Let $A_{i} \subseteq X$ and $B_{j} \subseteq$ Y.

2a. Show that $f\left(\bigcup_{i \in I} A_{i}\right)=\bigcup_{i \in I} f\left(A_{i}\right)$. (4 pts.)
2b. Show that $f\left(\bigcap_{i \in I} A_{i}\right) \subseteq \bigcap_{i \in I} f\left(A_{i}\right)$. (2 pts.)
2c. Show that $f^{-1}\left(\bigcap_{j \in J} B_{j}\right)=\bigcap_{j \in J} f^{-1}\left(B_{j}\right) .(4$ pts. $)$
2d. Show that $f^{-1}\left(\bigcup_{j \in J} B_{j}\right)=\bigcup_{j \in J} f^{-1}\left(B_{j}\right)$. (4 pts.)
2e. Does the reverse inclusion in \#2b hold? Prove or give a counterexample. (4 pts.)
3. Find a map $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\bigcap_{i=1}^{n} f^{i}(\mathbb{R}) \neq \varnothing$ but $\bigcap_{i \in \mathbf{N}} f^{i}(\mathbf{R})=\varnothing$. (8 pts.)
4. Let X be a nonempty subset of \mathbb{R} such that for $x, y \in X, x-y \in X$.

4a. Show that $0 \in X$. (1 pt .)
4b. Show that for $x \in X,-x \in X$ also. (1 pts.)
4c. Show that $x+y \in X$ for $x, y \in X$. (2 pts.)
From now on assume further that for $x \in X, x^{2} \in X$ also.
4d. Show that for $x, y \in X, 2 x y \in X$ also. (3 pts.)
4e. Show that $2 X$ is closed under,+- and \times. (4 pts.)
4f. Show that the relation

$$
x \equiv y \text { iff } x-y \in 2 X
$$

defines an equivalence relation on X. (4 pts.)
5. We will call a subset X of \mathbb{R} square-closed if for all $x \in X, x^{2} \in X$ also. Note that \varnothing and \mathbb{R} are square closed subsets of \mathbb{R}.

5a. Show that if Π is a set of square-closed subsets of \mathbb{R}, then $\cup \Pi$ and $\cap \Pi$ are square closed subsets of \mathbb{R}. (4 pts.)

5b. Let A be any subset of \mathbb{R}. Show that there is a smallest square-closed subset A^{*} that contains A. (4 pts.)

5c. Let A be any subset of \mathbb{R}. Show that there is a largest square-closed subset A° of A. (4 pts.)

5d. Prove or disprove: For any two subsets A and B of \mathbb{R},

$$
\begin{aligned}
& A^{*} \cup B^{*}=(A \cup B)^{*} \\
& A^{*} \cap B^{*}=(A \cap B)^{*} \\
& A^{\circ} \cup B^{\circ}=(A \cup B)^{\circ} \\
& A^{\circ} \cap B^{\circ}=(A \cap B)^{\circ}
\end{aligned}
$$

(12 pts.)
6. [Cantor-Schröder-Bernstein] Let A be a set and A^{\prime} a subset of A. Assume that there is a bijection $f: A \rightarrow A^{\prime}$ betweeen A and A^{\prime}. Let B be any set such that $A^{\prime} \subseteq B$ $\subseteq A$. The purpose of this exercise is to show that there is a bijection between B and A.

Let $Q=B \backslash A^{\prime}$.
Let $\Gamma=\{X \subseteq A: Q \cup f(X) \subseteq X\}$.
Let $T=\cap \Gamma=\bigcap_{X \in \Gamma} X$.
6a. Show that $T \in \Gamma$. (4 pts.)
6b. Show that $Q \cup f(T) \in \Gamma$. (4 pts.)
6c. Show that $T=Q \cup f(T)$. (Hint: Use a and b). (5 pts.)
6d. Show that $B=T \cup\left(A^{\prime} \backslash f(T)\right)$. (Hint: Use c). (5 pts.)
6e. Show that $T \cap\left(A^{\prime} \backslash f(T)\right)=\varnothing$. (5 pts.)
6f. Show that there is a bijection between B and A. (Hint: Use parts d and e). (5 pts.)

