Set Theory

Summer Final I
24th of July, 1999
Ali Nesin
Always justify your answer. A short answer of the form "yes" or "no" will not be accepted.

The total number of points is more than 100 , but a 100 will considered as a perfect score.

1. Let $(X,<)$ be an ordered set. A subset A of X is called dense in X, if for all $x<y$ in X, there is an $a \in A$ such that $x<a<y$. In this exercise, we will mainly consider the ordered set \mathbb{Q} (ordered naturally).

1a. Is \mathbb{Z} dense in \mathbb{Q} ? (2 pts.)
1b. Let S be any set. Consider the set $\wp(S)$ of subsets of S as an ordered set by the inclusion relation. Show that $\wp(S)$ has no dense subset. (3 pts.)

1b. Let $A=\left\{q^{2}: q \in \mathbb{Q}\right\}$. Order A naturally (the induced order of \mathbb{Q}). Is A dense in A ? (2 pts.)

1c. Is A dense in $\mathbb{Q}^{>0}$? (2 pts. $)$
1c. Is "to be dense in" a transitive relation between ordered sets? I.e., if $A \subseteq B \subseteq$ $C \subseteq X$ and if A is dense in B and B dense in C, is it true that A is dense in C ? (6 pts .)

1d. Let $A=\{x / y \in \mathbb{Q}: x, y \in \mathbb{Z}$ are prime to each other and y is odd $\}$. Is A dense in \mathbb{Q} ? (6 pts.)
2. Define the function $f: \mathbb{Q}^{>0} \rightarrow \mathbb{Q}$ as follows:

$$
f(q)=\left(\begin{array}{l}
-1 / q \text { if } 0<q<1 \\
q-2 \text { if } 1>q
\end{array}\right.
$$

Show that f is an order preserving bijection. (4 pts.)
3a. Are the ordered sets \mathbb{Z} and \mathbb{Q} isomorphic? (2 pts .)
3b. Are the ordered sets \mathbb{Q} and \mathbb{R} isomorphic? (2 pts.)
3c. Are the ordered sets $\mathbb{R}^{\geq 0}$ and \mathbb{R} isomorphic? (3 pts .)
3d. Are the ordered sets $\mathbb{R}^{>0}$ and \mathbb{R} isomorphic? (4 pts.)
3e. Are the ordered sets $(0,1)$ and \mathbb{R} isomorphic? (5 pts.)
3f. Which of $\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ is well-ordered? (3 pts.)
4. Let $(X,<)$ be a well-ordered set. Show that any order preserving $f: X \rightarrow X$ satisfies $f(x) \geq x$ for all $x \in X$. (7 pts.)
5. What is the cardinality of the set of cofinite subsets of \mathbb{N}. (3 pts.)
6. Is it true that any set of cardinal numbers has a maximal element? (8 pts.)

7a. Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ respect the order and the addition, i.e.,

$$
\forall x, y(x<y \rightarrow f(x)<f(y) \text { and } f(x+y)=f(x)+f(y))
$$

Show that there is an $a>0$ such that $f(x)=a x$. (10 pts.)
7b. Assume further that f respects the multiplication. Show that $f=\operatorname{Id} \mathbb{Q}$. (3 pts.)
7c. Let $b \in \mathbb{Q}$ and $a \in \mathbb{Q}^{>0}$. Show that $f(x)=a x+b$ is an order preserving bijection. (2 pts.)

7d. Find an order preserving bijection $f: \mathbb{Q} \rightarrow \mathbb{Q}$ which is different from the ones in 7c. (4 pts.)
8. Recall that ε_{0} is the least ordinal larger than all $\omega^{\omega^{\cdot \omega}}$ (n times) for all n. What is the cardinality of ε_{0} ? (8 pts .)

9a. Let $\mathfrak{R}=\{(a, b) \subseteq \mathbb{R}: a, b \in \mathbb{R} \cup\{\infty,-\infty\}$ and $a<b\}$. (Here we assume that $-\infty<x<\infty$ for all $x \in \mathbb{R}$). Without using the axiom of choice, find a function $f: \mathfrak{R} \rightarrow$ \mathbb{R} such that $f(I) \in I$ for all intervals $I \in \mathfrak{R}$. (10 pts .)

9b. Without using the axiom of choice, find a function $f: \mathfrak{R} \rightarrow \mathbb{Q}$ such that $f(I) \in I$ for all intervals $I \in \mathfrak{R}$. (10 pts.)
10. Let \Re be a set of nonempty disjoint sets. Show that $\operatorname{Card}(\cup \Re) \geq \operatorname{Card}(\mathfrak{R})$. (10 pts.)
11. A function $f: \mathbb{N} \rightarrow \mathbb{N}$ is called decidable if one can write a (finite of course) computer program $\mathrm{CP}(f)$ that calculates $f(x)$ with the input x for all $x \in \mathbb{N}$ after a finite amount of time. Otherwise, a function is called undecidable. Show that there is an undecidable function. (15 pts.)
12. Let X be a set. A filter on X is a set \mathfrak{I} of subsets of X that satisfies the following properties:
i) If $A \in \mathfrak{I}$ and $A \subseteq B \subseteq X$, then $B \in \mathfrak{I}$.
ii) If A and B are in \mathfrak{I}, then so is $A \cap B$.
iii) $\varnothing \notin \mathfrak{I}$ and $X \in \mathfrak{I}$.

If $A \subseteq X$ is a fixed nonempty subset of X, then the set of subsets of X that contain A is a filter on X, called principal filter.

If X is infinite, then the set of cofinite subsets of X is a filter, called Fréchet filter.
12a. Show that the Fréchet filter is not principal. (5 pts .)
A filter is called ultrafilter if it is a maximal filter.
12b. Show that if X is infinite then there are nonprincipal ultrafilters on X. (15 pts.)

13a. Show that any two dense and countable total orders without minimal and maximal elements are isomorphic. (Hint: Write the sets as $\left(a_{n}\right)_{n \in \omega}$ and $\left(b_{n}\right)_{n \in \omega}$. Construct the isomorphism with a "back and forth argument".) (20 pts.)

13b. Conclude that the ordered sets \mathbb{Q} and $\mathbb{Q} \cup\{\sqrt{ } 2\}$ are isomorphic. (3 pts.)

13c. Show that the ordered sets $\mathbb{Q} \cup(0,1)$ and $\mathbb{Q} \cup(0,1) \cup(2,3)$ are not isomorphic. (Here the intervals are real intervals). (7 pts.)

