Set Theory Summer Final I 24th of July, 1999 Ali Nesin

Always justify your answer. A short answer of the form "yes" or "no" will not be accepted.

The total number of points is more than 100, but a 100 will considered as a perfect score.

1. Let (X, <) be an ordered set. A subset *A* of *X* is called **dense** in *X*, if for all x < y in *X*, there is an $a \in A$ such that x < a < y. In this exercise, we will mainly consider the ordered set \mathbb{Q} (ordered naturally).

1a. Is \mathbb{Z} dense in \mathbb{Q} ? (2 pts.)

1b. Let *S* be any set. Consider the set $\mathcal{P}(S)$ of subsets of *S* as an ordered set by the inclusion relation. Show that $\mathcal{P}(S)$ has no dense subset. (3 pts.)

1b. Let $A = \{q^2 : q \in \mathbb{Q}\}$. Order A naturally (the induced order of \mathbb{Q}). Is A dense in A? (2 pts.)

1c. Is A dense in $\mathbb{Q}^{>0}$? (2 pts.)

1c. Is "to be dense in" a transitive relation between ordered sets? I.e., if $A \subseteq B \subseteq C \subseteq X$ and if A is dense in B and B dense in C, is it true that A is dense in C? (6 pts.)

1d. Let *A* = {*x*/*y* ∈ \mathbb{Q} : *x*, *y* ∈ \mathbb{Z} are prime to each other and *y* is odd}. Is *A* dense in \mathbb{Q} ? (6 pts.)

2. Define the function $f: \mathbb{Q}^{>0} \to \mathbb{Q}$ as follows: $f(q) = \begin{pmatrix} -1/q \text{ if } 0 < q < 1 \\ q - 2 \text{ if } 1 > q \end{cases}$

Show that f is an order preserving bijection. (4 pts.)

3a. Are the ordered sets \mathbb{Z} and \mathbb{Q} isomorphic? (2 pts.)

3b. Are the ordered sets \mathbb{Q} and \mathbb{R} isomorphic? (2 pts.)

3c. Are the ordered sets $\mathbb{R}^{\geq 0}$ and \mathbb{R} isomorphic? (3 pts.)

3d. Are the ordered sets $\mathbb{R}^{>0}$ and \mathbb{R} isomorphic? (4 pts.)

3e. Are the ordered sets (0, 1) and \mathbb{R} isomorphic? (5 pts.)

3f. Which of \mathbb{Z} , \mathbb{Q} , \mathbb{R} is well-ordered? (3 pts.)

4. Let (X, <) be a well-ordered set. Show that any order preserving $f : X \to X$ satisfies $f(x) \ge x$ for all $x \in X$. (7 pts.)

5. What is the cardinality of the set of cofinite subsets of \mathbb{N} . (3 pts.)

6. Is it true that any set of cardinal numbers has a maximal element? (8 pts.)

7a. Let $f: \mathbb{Q} \to \mathbb{Q}$ respect the order and the addition, i.e.,

 $\forall x, y (x < y \rightarrow f(x) < f(y) \text{ and } f(x + y) = f(x) + f(y)).$

Show that there is an a > 0 such that f(x) = ax. (10 pts.)

7b. Assume further that *f* respects the multiplication. Show that $f = Id_{\mathbb{Q}}$. (3 pts.)

7c. Let $b \in \mathbb{Q}$ and $a \in \mathbb{Q}^{>0}$. Show that f(x) = ax + b is an order preserving bijection. (2 pts.)

7d. Find an order preserving bijection $f : \mathbb{Q} \to \mathbb{Q}$ which is different from the ones in 7c. (4 pts.)

8. Recall that ε_0 is the least ordinal larger than all ω^{ω} (*n* times) for all *n*. What is the cardinality of ε_0 ? (8 pts.)

9a. Let $\Re = \{(a, b) \subseteq \mathbb{R} : a, b \in \mathbb{R} \cup \{\infty, -\infty\} \text{ and } a < b\}$. (Here we assume that $-\infty < x < \infty$ for all $x \in \mathbb{R}$). Without using the axiom of choice, find a function $f: \Re \to \mathbb{R}$ such that $f(I) \in I$ for all intervals $I \in \Re$. (10 pts.)

9b. Without using the axiom of choice, find a function $f: \mathfrak{R} \to \mathbb{Q}$ such that $f(I) \in I$ for all intervals $I \in \mathfrak{R}$. (10 pts.)

10. Let \Re be a set of nonempty disjoint sets. Show that $Card(\cup \Re) \ge Card(\Re)$. (10 pts.)

11. A function $f : \mathbb{N} \to \mathbb{N}$ is called **decidable** if one can write a (finite of course) computer program CP(*f*) that calculates f(x) with the input *x* for all $x \in \mathbb{N}$ after a finite amount of time. Otherwise, a function is called **undecidable**. Show that there is an undecidable function. (15 pts.)

12. Let X be a set. A filter on X is a set \mathfrak{I} of subsets of X that satisfies the following properties:

i) If $A \in \mathfrak{S}$ and $A \subseteq B \subseteq X$, then $B \in \mathfrak{S}$.

ii) If A and B are in \mathfrak{I} , then so is $A \cap B$.

iii) $\emptyset \notin \mathfrak{S}$ and $X \in \mathfrak{S}$.

If $A \subseteq X$ is a fixed nonempty subset of X, then the set of subsets of X that contain A is a filter on X, called **principal filter**.

If X is infinite, then the set of cofinite subsets of X is a filter, called **Fréchet filter**. **12a.** Show that the Fréchet filter is not principal. (5 pts.)

A filter is called **ultrafilter** if it is a maximal filter.

12b. Show that if X is infinite then there are nonprincipal ultrafilters on X. (15 pts.)

13a. Show that any two dense and countable total orders without minimal and maximal elements are isomorphic. (**Hint:** Write the sets as $(a_n)_{n \in \omega}$ and $(b_n)_{n \in \omega}$. Construct the isomorphism with a "back and forth argument".) (20 pts.)

13b. Conclude that the ordered sets \mathbb{Q} and $\mathbb{Q} \cup \{\sqrt{2}\}$ are isomorphic. (3 pts.)

13c. Show that the ordered sets $\mathbb{Q} \cup (0, 1)$ and $\mathbb{Q} \cup (0, 1) \cup (2, 3)$ are not isomorphic. (Here the intervals are real intervals). (7 pts.)