MATH 111 Summer Midterm I 14th of June, 1999 Ali Nesin

1. Show that Zorn's Lemma implies Axiom of Choice in view of the other axioms of set theory. (20 pts.)

A totally ordered set (X, \leq) is called a **well-ordered set** if every nonempty subset of *X* has a least element, i.e. if for all $\emptyset \neq A \subseteq X$, there is an $a \in A$ such that $a \leq x$ for all $x \in A$. A natural number and the set ω of natural numbers are examples of well-ordered sets.

2. On ω define

$$a \prec b \text{ iff } b \ge a.$$

Show that (ω, \prec) is not a well-ordered set. (5 pts.)

3. On $\omega \times \omega$ define

 $(a, b) \le (x, y)$ iff $(2a + 1)2^{y} \le (2x + 1)2^{b}$.

Show that this defines a total order on $\omega \times \omega$ which is not a well-order. (15 pts.)

4. On $\omega \times \omega$ define

 $(a, b) \le (x, y)$ iff either a < x or $(a = x \text{ and } b \le y)$.. Show that this defines a well-ordered set. (10 pts.)

5. Show that there is no strictly decreasing function from ω into into a well-ordered set. (10 pts.)

6. Well-ordering Theorem. Show that every set can be well-ordered. (Hint: Use the Axiom of Choice. (20 pts.)

7. Show that the Well-Ordering Theorem implies the Axiom of Choice in view of the other axioms of set theory. (Hint: Show that choice functions exist). (20 pts.)