Group Theory Problems (Oleg Belegradek)

1. Prove that

- (a) $(\mathbb{C}(n), \cdot) \cong (\mathbb{Z}_n, +),$
- (b) $(\mathbb{R},+) \cong (\mathbb{R}^{>0},\cdot),$
- (c) $(\mathbb{Q}, +) \ncong (\mathbb{Q}^{>0}, \cdot),$
- (d) $GL(F^n) \cong GL_n(F)$ (F is a field).

2. Show that

- (a) $S_n = \langle (12), (13), \dots, (1n) \rangle = \langle (12), (12 \dots n) \rangle,$
- (b) $A_n = \langle (ijk) : i, j, k \text{ are distinct} \rangle.$
- 3. Let K be a field, $n \ge 2$. Let $t_{ij}(\alpha) = e + \alpha e_{ij}$, with $i \ne j$, $d(\beta) = e + (\beta 1)e_{nn}$. Prove that any matrix can be written in the form $t_1t_2 \dots t_n d(\beta)t_{n+1} \dots t_s$ where each $t_k = t_{ij}(\alpha)$ for some $\alpha \in K$. Show that
 - (a) $GL_n(K) = \langle t_{ij}(\alpha), d(\beta) : \alpha, \beta \in K, \beta \neq 0, i \neq j \rangle,$
 - (b) $SL_n(K) = \langle t_{ij}(\alpha) : \alpha \in K, i \neq j \rangle,$
 - (c) $T_n(K) = \langle t_{ij}(\alpha), diag(\beta_1, \dots, \beta_n) : i < j, \beta_1, \dots, \beta_n \neq 0 \rangle,$
 - (d) $UT_n(K) = \langle t_{ij}(\alpha) : i < j \rangle.$
- 4. Let G be a group, $g \in G$. Show that
 - (a) If $g^n = 1$ then |g| divides n.
 - (b) $|g| = |\langle g \rangle|$.
- 5. Let G be a group, $a, b \in G$. Assume ab = ba and $|a|, |b| < \infty$. If (|a|, |b|) = 1, then |ab| = |a| |b|. If $(|a|, |b|) \neq 1$, then there exists a $c \in G$ such that $|c| = \operatorname{lcm}(|a|, |b|)$.
- 6. Show that for any $n, m, k \in \{2, 3, 4, ...\} \cup \{\infty\}$, there is a group G and $a, b \in G$ such that |a| = n, |b| = m and |ab| = k.
- 7. Show that all subgroups of $\mathbb{C}(p^{\infty})$ are $\mathbb{C}(p^n)$.
- 8. Prove that any abelian group without proper infinite subgroups is isomorphic to $\mathbb{C}(p^{\infty})$.
- 9. Find the following groups explicitly:
 - (a) $Aut(\mathbb{Z},+)$
 - (b) $Aut(\mathbb{Z}, <)$
 - (c) $Aut(\mathbb{Z}, +, <)$

- (d) $Aut(\{1, \ldots, 5\}, \{(1,3), (2,3), (4,3), (5,3)\})$ (as a graph)
- (e) $Isom(\mathbb{R})$
- (f) $Isom(\mathbb{R}^{\geq 0})$
- (g) $Isom(\mathbb{R}^{\geq 0} \cup i\mathbb{R}^{\geq 0})$
- 10. Let $G = \overline{\prod}_{i \in I} G_i$. Let $J \subseteq I$, $G_J = \{f \in G : \forall i \in J^c \ f(i) = e_i\}$. Show that $G \cong G_J \times G_{J^c}$. Prove the same statement for direct sum.
- 11. Show that $D_n(K) \cong \overline{\prod}_n K^*$.
- 12. Prove that if gcd(n,m) = 1, then $\mathbb{C}(n) \times \mathbb{C}(m) \cong \mathbb{C}(nm)$.
- 13. Find all left and right cosets of $\langle (12) \rangle$ in Sym(3).
- 14. Show that $|\mathbb{Z}: \langle n \rangle| = n$.
- 15. Prove that \mathbb{Q} has no proper subgroup of finite index.
- 16. Show that |Sym(n) : Alt(n)| = 2.
- 17. Let $A, B \leq G$. Prove that $|G : A \cap B| \leq |G : A|$.
- 18. Let $A \leq B \leq G$. Show that $|G:A| < \infty$ if and only if |G:B|, $|G:A| < \infty$. If we have this situation then $|G:A| = |G:B| \cdot |B:A|$.
- 19. Let $A, B \leq G$ be of finite index. Show that $|G: A \cap B| \leq |G: A| \cdot |G: B|$.
- 20. Prove that
 - (a) $Inn(G) \leq Aut(G)$
 - (b) $SL_n(K) \trianglelefteq GL_n(K)$, K is a commutative ring with unit.
 - (c) $UT_n(K) \leq T_n(K)$
 - (d) $UT_n^m(K) \leq T_n(K)$
- 21. Show that every subgroup of index 2 is normal.
- 22. Let $A, B \leq G$. Show that
 - (a) if $A \leq G$ then $AB = BA \leq G$.
 - (b) if $A, B \leq G$ then $AB \leq G$.
 - (c) it is possible that $A \trianglelefteq B$ and $B \trianglelefteq G$ but $A \not \trianglelefteq G$.
- 23. G is abelian if an only if for all $g \in G$ $|g^G| = 1$.
- 24. Suppose that $A \leq B \leq G$. Show that
 - (a) $N_B(A) \leq B$
 - (b) $A \leq B$ if and only if $N_B(A) = B$

25. Let

$$G = \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) : a, b \in \mathbb{Q}, a \neq 0 \right\}$$

Find a subgroup of G which is conjugate to a proper subgroup of it.

- 26. Show that $Z(G) \trianglelefteq G$.
- 27. Show that
 - (a) Sym(n) is abelian for n < 3.
 - (b) $Z(Sym(n)) = \{Id\} \text{ if } n \ge 3.$
 - (c) $Alt(1) = Alt(2) = \{Id\}, Alt(3) = \langle (123) \rangle.$
 - (d) $Z(Alt(n)) = \{Id\}$ for $n \ge 4$.
- 28. Let K be a field. Prove the following
 - (a) $Z(GL_n(K)) = \{ \alpha E : \alpha \in K^* \}$
 - (b) $Z(SL_n(K)) = \{\alpha E : \alpha^n = Id\}$
 - (c) $Z(T_n(K)) = \{ \alpha E : \alpha \in K^* \}$
 - (d) $Z(UT_n(K)) = \{E + e_{1n} : \alpha \in K\}$
- 29. Show that $Z(\overline{\prod}_{i \in I} G_i) = \overline{\prod}_{i \in I} Z(G_i)$. For the next five problems K denotes a field.
- 30. Show that if |K| > 2 or n > 2 then $GL_n(K)' = SL_n(K)$.
- 31. Prove that $GL_2(\mathbb{F}_2) = SL_2(\mathbb{F}_2) \cong Sym(3)$. Find $GL_2(\mathbb{F}_2)'$.
- 32. Show that if |K| > 2 or $n \ge 3$ then $SL_n(K)' = SL_n(K)$.
- 33. Find $SL_2(\mathbb{F}_2)'$. Prove that $SL_2(\mathbb{F}_3)' \neq SL_2(\mathbb{F}_3)$.
- 34. Show that if |K| > 2 then $T_n(K)' = UT_n(K)$. If |K| = 2 then $T_n(K)' = UT_n(K)$.
- 35. Let G be a group, $A, B, C \leq G$. Then [AB, C] = [A, C] [B, C].
- 36. Let G be as in problem 25. Find G' and show that any element in G' is a commutator.
- 37. Prove that $(\prod_{i \in I} G_i)' = \prod_{i \in I} G'_i$. Is it true for $\overline{\prod}$.
- Decide which of the following properties are preserved under homomorphisms:
 - (a) being abelian,
 - (b) being nonabelian,

- (c) being finite,
- (d) being infinite,
- (e) being torsion,
- (f) being torsion-free.
- 39. Show that a quotient of a cyclic group is cyclic.
- 40. Let G be a group and $N \leq G$. Prove that G/N is abelian if and only if $G' \leq N$.
- 41. Find $T_n(K)/UT_n(K)$, $\left\{\frac{a}{p^n}: a \in \mathbb{Z}, n \in \mathbb{N}\right\}/\mathbb{Z}$.
- 42. Let G be a group. Define a map Inn from G to Aut(G) sending g to the automorphism $x \mapsto gxg^{-1}$. Show that
 - (a) *Inn* is a homomorphism,
 - (b) Ker(Inn) = Z(G),
 - (c) $Inn(G) \leq Aut(G)$.
- 43. Show that $End(K) \cong K$ for $K = \mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}$.
- 44. Show that $End(\oplus_n K) \cong M_n(K)$ for $K = \mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}$.
- 45. Let $\mu : A \longrightarrow B$ be a group homomorphism. Prove that $(a, b) \mapsto (a, b.\mu(a)) \in Aut(A \times B)$.
- 46. Show that Aut(Sym(3)) = Inn(Sym(3)).
- 47. Let G be a group. Let $\Phi \subset End(G)$. If a subgroup H is invariant under all $\varphi \in \Phi$ we write $H \leq_{\Phi} G$. Let $H_i \leq_{\Phi} G$. Show that
 - (a) $\bigcap_{i \in I} H_i \leq_{\Phi} G$,
 - (b) $\left\langle \bigcup_{i \in I} H_i \right\rangle \leq_{\Phi} G.$
- 48. Let $H \leq_{\Phi} G$. If $\Phi = End(G)$ we write $H \leq_{e} G$, if $\Phi = Aut(G)$ we write $H \leq_{a} G$. Show that
 - (a) \leq_e, \leq_a are transitive,
 - (b) \leq is not transitive in general,
 - (c) If $B \trianglelefteq G$ and $A \leq_a B$ then $A \trianglelefteq G$.
- 49. Show that $Z(G) \leq_a G$ but in general $Z(G) \nleq_e G$.
- 50. Show that in \mathbb{Z}, \mathbb{Z}_n and $\mathbb{C}(p^{\infty})$ all subgroups are invariant under endomorphisms.
- 51. Let K be a field. Show that

- (a) $UT_n(K) \leq_e T_n(K)$,
- (b) $SL_n(K) \leq_e GL_n(K)$.
- 52. Show that a periodic abelian group is automorphically simple if and only if it is isomorphic to $\bigoplus_{\lambda} \mathbb{Z}_p$ for some prime p.
- 53. Show that an abelian group is automorphically simple if and only if it is isomorphic to $\bigoplus_{\lambda} \mathbb{Z}_p$ for some prime p or $\bigoplus_{\lambda} \mathbb{Q}$.
- 54. Define $Hol(G) = G \times_{semi} Aut(G)$. Show that $Hol(K) = \left\{ \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix} : a \in K, b \in K^* \right\}$ for $K = \mathbb{Z}, \mathbb{Z}_n, \mathbb{Q}$.
- 55. Show that the following groups are nonisomorphic: $\mathbb{Z}Wr\mathbb{Z}_2$, $\mathbb{Z}_2Wr\mathbb{Z}$, $\mathbb{Z}_2wr\mathbb{Z}$.
- 56. Show that if $A_0 \leq A$, $B_0 \leq B$ then $A_0 w r B_0 \hookrightarrow A w r B$.
- 57. Suppose that $A \neq 1$, $1 \neq N \trianglelefteq AwrB$. Show that $N \cap fun(B, A) \neq 1$.
- 58. Compute Z(AwrB), Z(AWrb).
- 59. Compute $(\mathbb{Z}wr\mathbb{Z})'$.
- 60. Show that the operation wr is not associative even in the class of finite groups.
- 61. Let \mathbb{R}^* act on \mathbb{R}^2 by
 - (a) $\lambda(x, y) = (\lambda x, \lambda^{-1}y),$
 - (b) $\lambda(x,y) = (\lambda x, y),$
 - (c) $\lambda(x,y) = (\lambda x, \lambda^2 y),$
 - (d) $\lambda(x,y) = (\lambda^2 x, \lambda^2 y).$

Find the orbits.

- 62. Let Sym(n) act on \mathbb{R}^n via permuting coordinates. Find the orbits.
- 63. Let $Sym(\mathbb{N})$ act on $\wp(\mathbb{N})$ in the natural way. Find the orbits.
- 64. Show that for each prime p and each integer greater than 2 there is a nonabelian group of order p^n .
- 65. Let G be a finite nontrivial p-group acting on a finite set. Show that the kernel of the action is nontrivial.
- 66. Show that $\mathbb{R}^{>0}$ splits in \mathbb{R}^* .
- 67. Decide whether the following groups split or not:
 - (a) $PSL_n(K)$ in $GL_n(K)$

- (b) $PSL_n(K)$ in $PGL_n(K)$
- (c) \mathbb{Z} in \mathbb{Q}
- (d) $n\mathbb{Z}$ in \mathbb{Z}
- 68. Prove that in a nilpotent group G the set $A_p = \{g \in G : g^{p^n} = 1 \text{ for some } n\}$ is a subgroup of G. Show that if G is torsion then G is the direct sum of A_p 's.
- 69. Show that a divisible torsion nilpotent group is abelian.
- 70. Let G be a nilpotent group, $H \lhd G$. Show that if G is divisible and torsion then it is central in G.
- 71. Find $End(\mathbb{Z}/n\mathbb{Z})$, $Aut(\mathbb{Z}/n\mathbb{Z})$ and $Hom(\mathbb{Z}/n\mathbb{Z},\mathbb{Z}/m\mathbb{Z})$.
- 72. Find $End((\mathbb{Z}/n\mathbb{Z})^m)$, $Aut((\mathbb{Z}/n\mathbb{Z})^m)$, $End(\mathbb{Z}/p^n\mathbb{Z})$ and $End(\mathbb{Z}/p^\infty\mathbb{Z})$.
- 73. Let g be an element of $PSL_n(K)$. Show that the centralizer of g is abelian if and only if charK = 2 and n = 2. Prove that this never happens for Alt(n) for $n \ge 5$.
- 74. Let G act transitively on X. Let $x \in X$. Prove that the action of G is equivalent to the action of G on G/G_x by left translation.
- 75. An abelian group is called reduced if it has no divisible nonzero subgroups. Prove that any abelian group is a direct sum of a divisible and a reduced group.
- 76. In any torsion free divisible abelian group the intersection of any family of divisible subgroups is divisible. Show that for torsion groups it fails.
- 77. Prove that for any torsion-free abelian group A there is a torsion free divisible abelian group $\overline{A} \ge A$ such that there is no divisible group B with $\overline{A} \ge B \ge A$. \overline{A} is called a divisible hall of A. Show that all the divisible halls of A are isomorphic over A.
- 78. Let $G = \overline{\oplus}_p \mathbb{Z}_p$. Show that $G/G_{tor} \cong (\mathbb{R}, +)$.
- 79. Prove that any direct sum of cyclic groups is reduced.
- 80. Show that \mathbb{Q} and $\mathbb{C}(p^{\infty})$ are not direct sums.
- 81. Prove that if G/H is torsion free then H is a pure subgroup of G
- 82. Show that cyclic groups has no pure subgroups.
- 83. Prove that in the group F(a, b) the set $\{a^n b a^n : n \in \mathbb{N}\}$ generates a subgroup freely.
- 84. Prove that every free group with more than one generator is nonabelian.

85. Prove that

 $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$ generate a free subgroup of $Sl_2(\mathbb{Z})$.

- 86. Find defining relations for $\oplus_n \mathbb{Z}$.
- 87. Show that $Sym(3) \cong \langle a, b : a^2, b^3, (ab)^2 \rangle$, $\mathbf{Z}_6 \cong \langle a, b : a^2, b^3, a^{-1}b^{-1}ab \rangle$.
- 88. Prove that if $F(X) \cong F(Y)$ then |X| = |Y|.
- 89. Let KN be the class of all K by N groups. Show that K(NM) = (KN)M.
- 90. Let F be a field. Prove that $T_n(K)$ is solvable.
- 91. Show that in any group the product of two solvable subgroups is solvable subgroup.
- 92. Show that in any finite group G there is the greatest normal solvable subgroup S of G. Moreover G/S has no normal abelian subgroups.
- 93. Prove that any finitely generated torsion solvable group is finite.
- 94. Prove that for any finite solvable group there is a series of subgroups $1 = G_0 \trianglelefteq G_1 \trianglelefteq \ldots \trianglelefteq G_n = G$ such that $G_i \trianglelefteq G$ and G_{i+1}/G_i is cyclic.
- 95. Let $A \leq B \leq C$ be groups. Then $B/A \subseteq Z(G/A)$ if and only if $[B, C] \leq A$.
- 96. Let A be the class of abelian groups. Show that if G is nilpotent of class n then $G \in A^n$.
- 97. Let K be a ring, $n \ge 2$. Prove that $UT_n(K)$ is nilpotent of class n-1.
- 98. Show that for any group G if G/Z(G) is nilpotent then G is nilpotent.