A module is called **simple** if it has no nontrivial proper submodules. A module is called **semisimple** if it is a direct sum of simple modules.

1. Classify all simple \(\mathbb{Z} \)-modules. Find a \(\mathbb{Z} \)-module which is not semisimple.

2. Let \(R \) be a ring and \(N \) and \(M \) be two simple \(R \)-modules. Show that any \(R \)-module homomorphism from \(N \) into \(M \) is an isomorphism. Deduce that \(\text{End}_R(M) \) is a division ring.

3. Show that the following three conditions on a module \(M \) are equivalent:
 a) \(M \) is a direct sum of simple submodules.
 b) \(M \) is a sum of simple submodules.
 c) Every submodule \(N \) of \(M \) is a direct summand of \(M \), that is, there is a submodule \(N' \) such that \(M = N \oplus N' \).
 Note: You need Zorn’s Lemma.

4. Conclude that submodules and quotients of semisimple modules are semisimple.