Math 211 Algebra
Final
January 16, 2006-01-14

A module is called simple if it has no nontrivial proper submodules. A module is called semisimple if it is a direct sum of simple modules.

1. Classify all simple \mathbb{Z}-modules. Find a \mathbb{Z}-module which is not semisimple.
2. Let R be a ring and N and M be two simple R-modules. Show that any R-module homomorphism from N into M is an isomorphism. Dedule that $\operatorname{End}_{R}(M)$ is a division ring.
3. Show that the following three conditions on a module M are equivalent:
a) M is a direct sum of simple submodules.
b) M is a sum of simple submodules.
c) Every submodule N of M is a direct summand of M, that is, there is a submodule N^{\prime} such that $M=N \oplus N^{\prime}$.
Note: You need Zorn's Lemma.
4. Conclude that submodules and quotients of semisimple modules are semisimple.
