Exercises in Algebra IIB No. 7

1 Show that $\sqrt{5} \notin \mathbb{Q}(\sqrt{2}, \sqrt{7}, \sqrt{11}, \sqrt{13})$.
2 Let $\theta \in \overline{\mathbb{Q}}$ be an algebraic number. Then show that $\mathbb{Q}(\theta)$ and $\mathbb{Q}[\theta]$ are isomorphic. In particular, write $\left(2+2 \theta+\theta^{2}\right)^{-1}$ in terms of a polynomial of θ when $\theta=\sqrt[3]{2}$.
$\sqrt{3}$ Let K be a field. Find all automorphisms of $K(X)$ over K.
4 Let K be a field. Find all automorphisms of $K((X))$ over K.
5 Determine all monic irreducible polynomials of degree $n(2 \leq n \leq 4)$ in $\mathbb{F}_{2}[X]$.
6 Check that $X^{2}+2$ and $X^{2}+X+1$ are both irreducible in $\mathbb{F}_{5}[X]$. Construct concretely an isomorphism between $\mathbb{F}_{5}[X] /\left(X^{2}+2\right)$ and $\mathbb{F}_{5}[X] /\left(X^{2}+X+1\right)$.

7 Let p be a prime and a a non-zero element of \mathbb{F}_{p}. Then show that $X^{p}-X-a$ is irreducible in $\mathbb{F}_{p}[X]$.

8 Find a condition of prime numbers p such that $f(X)=X^{4}+X^{3}+X^{2}+X+1$ can be expressed as a product of different four linear forms in $\mathbb{F}_{p}[X]$.

9 Show that GL $\left(n, \mathbb{F}_{p}\right)$ has a cyclic subgroup of order $p^{n}-1$.
10 Let $p \geq 7$ be a prime and $\left\{a_{n}\right\}_{n=0}^{\infty}$ the Fibonacci sequence. Let t be the smallest positive integer such that $a_{n+t} \equiv a_{n}(\bmod p)$ for $\forall n \geq 0$. Then show that $t \mid\left(p^{2}-1\right)$.

11 Let q be a power of a prime number and n a positive integer.
(1) Show that

$$
X^{q^{n}}-1=\prod_{i} f_{i}(X) \in \mathbb{F}_{q}[X]
$$

where the product takes all the monic irreducible polynomials $f_{i}(X) \in \mathbb{F}_{q}[X]$ with $\operatorname{deg} f_{i} \mid n$.
(2) Let $N(q, n)$ be the number of the monic irreducible polynomials of degree n in $\mathbb{F}_{q}[X]$. Then show that

$$
N(q, n)=\frac{1}{n} \sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d},
$$

where $\mu(x)$ is the Möbius function.
(3) Show that

$$
\sharp\left\{\theta \in \mathbb{F}_{q^{n}} \mid \mathbb{F}_{q}(\theta)=\mathbb{F}_{q^{n}}\right\}=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) q^{d} .
$$

12 Let $K=\mathbb{F}_{q}$ and $L=\mathbb{F}_{q^{n}}$. Then show the following equalities:
(1) $t_{L / K}(x)=\sum_{i=0}^{n-1} x^{q^{i}}$.
(2) $N_{L / K}(x)=x^{\left(q^{n}-1\right) /(q-1)}$.

Show moreover that $t_{L / K}$ and $N_{L / K}$ map L surjectively onto K.
13 Let $k=\mathbb{F}_{q}$, and $a \in k^{\times}$. Then show that

$$
{ }^{\sharp}\left\{(x, y) \in k^{2} \mid x^{2}-a y^{2}=1\right\}= \begin{cases}q-1 & \text { if } \sqrt{a} \in k \\ q+1 & \text { if } \sqrt{a} \notin k .\end{cases}
$$

