1. Prove that any cyclic group of order p^n, where p is prime, is indecomposable into a direct product.

2. Let N be a normal subgroup of a group G. Prove that G/N is abelian iff N contains the derived subgroup G'.

3. Let H be a subgroup of a group G. Prove that if the product of any two left cosets of H is a left coset of H then H is a normal subgroup.

4. Prove that every group of order 4 is abelian.

5. Prove that, for any group G, the set $\text{Inn}(G)$ of all inner automorphisms of G is a normal subgroup of the group $\text{Aut}(G)$ of all automorphisms of G.

6. Prove that $S_n/A_n \simeq \mathbb{Z}_2$.