MATH 311 Basic Group Theory
Prof. Oleg Belegradek
Problem set 10

1. For classes of groups \(\mathcal{K} \) and \(\mathcal{N} \) we denote by \(\mathcal{K}\mathcal{N} \) the class of all \(\mathcal{K} \)-by-\(\mathcal{N} \) groups. Prove that \((\mathcal{K}\mathcal{N})\mathcal{M} = \mathcal{K}(\mathcal{N}\mathcal{M}) \), for any classes of groups \(\mathcal{K}, \mathcal{N}, \mathcal{M} \).

2. Prove that for any field \(F \) and any \(n \geq 1 \) the group \(T_n(F) \) is \(n \)-step solvable.

3. Prove that for any \(n \) the class \(\mathfrak{X}_n \) is closed under subgroups, cartesian products and homomorphic images. Is the same true for the class of all solvable groups?

4. Prove that solvable-by-solvable group is solvable.

5. Prove that in any group the product of two normal solvable subgroups is a normal solvable subgroup.

6. Prove that in any finite group \(G \) there is the greatest normal solvable subgroup \(R \), the so called solvable radical of \(G \). Show that \(G/R \) has no normal solvable subgroups.

7. Prove that any finitely generated periodic solvable group is finite.

8. Prove that if \(G \) is a finite solvable group then there are subgroups

\[\{e\} = G_0 < G_1 < \cdots < G_n = G \]

such that \(G_i \triangleleft G_{i+1} \) and \(G_{i+1}/G_i \) is a cyclic group of prime order for any \(i < n \).

9. For a group \(G \) and \(i \leq \omega \) we define inductively the subgroup \(\zeta_i(G) \) as follows:

\[\zeta_0(G) = G, \quad \zeta_{i+1}(G) = [\zeta_i(G), G]. \]

(a) Show that all subgroups \(\zeta_i(G) \) are normal, and \(\zeta_{i+1}(G) \leq \zeta_i(G) \) for all \(i \).

(b) Show that \(G \) is nilpotent iff \(\zeta_n(G) = \{e\} \) for some \(n \). Moreover, \(G \) is \(n \)-step nilpotent iff \(\zeta_n(G) = \{e\} \) but \(\zeta_{n-1}(G) \neq \{e\} \).

(c) Suppose \(G \) is a nilpotent group and \(\{e\} = G_n \leq G_{n-1} \leq \cdots \leq G_0 = G \) is a central series in \(G \). Prove that \(\zeta_i(G) \leq G_i \) for all \(i \leq n \).