Math 211

Midterm
Kasım 2005
Ali Nesin

1. Let I and J be two ideals of a ring R. Assume that $I \subseteq J \subseteq R$. Show that the $\operatorname{ring}(R / I) /(J / I)$ is isomorphic to the ring R / J.
2. Let I and J be two ideals of a ring R. Let $I J$ be the ideal generated by the set $\{i j: i \in I, j \in J\}$. Show that $I J \subseteq I \cap J$. Does the equality always hold? For each $n>0$ find an example where $I^{n}=0$ but $I^{n-l} \neq 0$.
3. Let $f, g \in \mathbb{Z}[X]$. Assume that a prime number p divides $f g$ in $\mathbb{Z}[X]$, i.e., $f g=p h$ for some $h \in \mathbb{Z}[X]$. Show that p divides f or g.
4. Recall that an R-module M is finitely generated if $M=R m_{1}+\ldots+R m_{n}$ for some $m_{1}, \ldots, m_{n} \in M$.

4a. Show that \mathbb{Q} is not a finitely generated \mathbb{Z}-module.
4b. Let f be a monic polynomial in $\mathbb{Z}[X]$. Show that $\mathbb{Z}[X] /\langle f\rangle$ is a finitely generated \mathbb{Z}-module.

4c. Let I be a nonzero ideal of $\mathbb{Z}[X]$. Is $\mathbb{Z}[X] / I$ always a finitely generated \mathbb{Z} module?
5. Let I be an ideal of $\mathbb{Z}[X]$. Show that the ideal of $\mathbb{Q}[X]$ generated by I is of the form $\{f g / n: g \in \mathbb{Z}[X], n \in \mathbb{N} \backslash\{0\}\}$ for some fixed f in I. (Hint: Consider the ideal generated by I in $\mathbb{Q}[X])$.
6. Show that a finite commutative ring with no zerodivisors is a field.
7. Let C be the set of functions from \mathbb{R} into \mathbb{R}. C is a ring under the addition and multiplication of functions.

7a. Describe the invertible elements of C.
7b. Describe the set of zero divisors of C
7c. Let $a \in \mathbf{R}$ be fixed. Consider $I_{a}=\{f \in C: f(a)=0\}$. Show that I_{a} is a maximal ideal of C. What is C / I_{a} ?

7d. Find an ideal I of C with the property that $I \backslash I_{a} \neq \varnothing$. Conclude that there is a maximal ideal of C which is different from the ideals of the form I_{a}.

