Math 211 Midterm Kasım 2005 Ali Nesin

1. Let *I* and *J* be two ideals of a ring *R*. Assume that $I \subseteq J \subseteq R$. Show that the ring (R/I)/(J/I) is isomorphic to the ring R/J.

2. Let *I* and *J* be two ideals of a ring *R*. Let *IJ* be the ideal generated by the set $\{ij: i \in I, j \in J\}$. Show that $IJ \subseteq I \cap J$. Does the equality always hold? For each n > 0 find an example where $I^n = 0$ but $I^{n-1} \neq 0$.

3. Let $f, g \in \mathbb{Z}[X]$. Assume that a prime number p divides fg in $\mathbb{Z}[X]$, i.e., fg = ph for some $h \in \mathbb{Z}[X]$. Show that p divides f or g.

4. Recall that an *R*-module *M* is finitely generated if $M = Rm_1 + ... + Rm_n$ for some $m_1, ..., m_n \in M$.

4a. Show that \mathbb{Q} is not a finitely generated \mathbb{Z} -module.

4b. Let *f* be a monic polynomial in $\mathbb{Z}[X]$. Show that $\mathbb{Z}[X]/\langle f \rangle$ is a finitely generated \mathbb{Z} -module.

4c. Let *I* be a nonzero ideal of $\mathbb{Z}[X]$. Is $\mathbb{Z}[X]/I$ always a finitely generated \mathbb{Z} -module?

5. Let *I* be an ideal of $\mathbb{Z}[X]$. Show that the ideal of $\mathbb{Q}[X]$ generated by *I* is of the form $\{fg/n : g \in \mathbb{Z}[X], n \in \mathbb{N} \setminus \{0\}\}$ for some fixed *f* in *I*. (Hint: Consider the ideal generated by *I* in $\mathbb{Q}[X]$).

6. Show that a finite commutative ring with no zerodivisors is a field.

7. Let C be the set of functions from \mathbb{R} into \mathbb{R} . C is a ring under the addition and multiplication of functions.

7a. Describe the invertible elements of *C*.

7b. Describe the set of zero divisors of C

7c. Let $a \in \mathbf{R}$ be fixed. Consider $I_a = \{f \in C : f(a) = 0\}$. Show that I_a is a maximal ideal of *C*. What is C/I_a ?

7d. Find an ideal *I* of *C* with the property that $I \setminus I_a \neq \emptyset$. Conclude that there is a maximal ideal of *C* which is different from the ideals of the form I_a .