1. Prove that the group \(\mathbb{Q} \) has no subgroups of finite index.
2. (a) Prove that \(|A : A \cap B| \leq |G : B| \) for any subgroups \(A, B \) of a group \(G \).
 (b) Prove that if \(A \leq B \leq G \) then \(|G : A| \) is finite iff \(|G : B| \) and \(|B : A| \) both are finite. Moreover, if \(|G : A| \) is finite then
 \[|G : A| = |G : B| : |B : A|. \]
 (c) Prove that the intersection of finitely many subgroups of finite index is a subgroup of finite index.
3. Prove that two permutations are conjugate in \(\text{Sym}(X) \) iff they have the same number of orbits of cardinality \(n \) for every \(n \in \{1, 2, \ldots, N_0\} \).
4. (a) Prove that any subgroup of index 2 is normal.
 (b) Give an example which shows that for 3 instead of 2 this is not true.
5. Let \(K \) be a field.
 (a) Prove that \(\text{SL}_n(K) \leq \text{GL}_n(K) \).
 (b) Prove that \(\text{UT}_n(K) \leq \text{T}_n(K) \).
 (c) Prove that \(\text{UT}_n^m(K) \leq \text{UT}_n(K) \). Here, for \(1 \leq m \leq n \), \(\text{UT}_n^m(K) \) is defined to be the set of matrices \((a_{ij}) \) in \(\text{UT}_n(K) \) such that \(a_{ij} = 0 \) if \(0 < j - i < m \).
6. Let \(G \) be the subgroup \(\left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right\} \) of \(\text{GL}_2(\mathbb{Q}) \). Find in \(G \) a subgroup \(H \) conjugate with a proper subgroup of \(H \).
7. Let \(H \) be a subgroup of finite index in \(G \), and \(K \) be the intersection of all subgroups conjugate with \(H \). Prove that \(K \) is a normal subgroup of finite index in \(G \).
8. Prove that \(Z(A_n) = \{e\} \) for \(n \geq 4 \), and \(A_3 \) is abelian.
9. Let \(K \) be a field. Prove that
 (a) \(Z(\text{GL}_n(K)) = \{ \alpha E : \alpha \in K \} \),
 (b) \(Z(\text{SL}_n(K)) = \{ \alpha E : \alpha \in K, \alpha^n = 1 \} \),
 (c) \(Z(\text{T}_n(K)) = \{ \alpha E : \alpha \in K \} \), if \(|K| \neq 2 \),
 (d) \(Z(\text{UT}_n(K)) = \{ e + \alpha e_{1n} : \alpha \in K \} \),
 (e) \(Z(\text{T}_n(K)) = \{ e + \alpha e_{1n} : \alpha \in K \} \), if \(|K| = 2 \).
10. Prove that the centralizer of any finite normal subgroup of \(G \) is a subgroup of finite index in \(G \).