MATH 212 BASIC ALGEBRA 2 Midterm exam Prof. Oleg Belegradek

- 1. Let n > 1 and $\alpha_1, \ldots, \alpha_n$ be all roots of the polynomial $x^n + x^{n-1} + 1$. Find $\alpha_1^2 + \cdots + \alpha_n^2$.
- 2. Prove that the field $\mathbb{C}(x)$ of rational functions over complex numbers is not algebraically closed.
- 3. Let K be a splitting field of the polynomial $x^3 2$ over \mathbb{Q} . What is the degree of K over \mathbb{Q} ? Find a basis of K as a vector space over \mathbb{Q} .
- 4. Decompose 9-3i into a product of irreducible elements in the ring of Gaussian numbers $\mathbb{Z}[i]$.
- 5. Let H be the division ring of quaternions, and 1, i, j, k be its standard basis.
 (a) For a = 4 − 8i and b = 1 − i + j − k, find ab⁻¹ and b⁻¹a in H.
 (b) Prove that H ≃ H^{op}.
- 6. Prove that $A \otimes_{\mathbb{Z}} \mathbb{Z}_n \simeq A/nA$, for any abelian group A.
- 7. Let p(x) be a real polynomial which takes only nonnegative values. Prove that there exist real polynomials f(x) and g(x) such that $p = f^2 + g^2$.