MATH 212

BASIC ALGEBRA 2

Midterm exam
Prof. Oleg Belegradek

1. Let $n>1$ and $\alpha_{1}, \ldots, \alpha_{n}$ be all roots of the polynomial $x^{n}+x^{n-1}+1$. Find $\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}$.
2. Prove that the field $\mathbb{C}(x)$ of rational functions over complex numbers is not algebraically closed.
3. Let K be a splitting field of the polynomial $x^{3}-2$ over \mathbb{Q}. What is the degree of K over \mathbb{Q} ? Find a basis of K as a vector space over \mathbb{Q}.
4. Decompose $9-3 i$ into a product of irreducible elements in the ring of Gaussian numbers $\mathbb{Z}[i]$.
5 . Let \mathbb{H} be the division ring of quaternions, and $1, i, j, k$ be its standard basis.
(a) For $a=4-8 i$ and $b=1-i+j-k$, find $a b^{-1}$ and $b^{-1} a$ in \mathbb{H}.
(b) Prove that $\mathbb{H} \simeq \mathbb{H}^{\mathrm{op}}$.
5. Prove that $A \otimes_{\mathbb{Z}} \mathbb{Z}_{n} \simeq A / n A$, for any abelian group A.
6. Let $p(x)$ be a real polynomial which takes only nonnegative values. Prove that there exist real polynomials $f(x)$ and $g(x)$ such that $p=f^{2}+g^{2}$.
