MATH 211
 BASIC ALGEBRA II
 Final exam
 Prof. Oleg Belegradek

1. Let a, b, c be the complex roots of the polynomial $x^{3}-x-1$. Find a polynomial over \mathbb{Q} whose roots are a^{2}, b^{2}, c^{2}.
2. Find all quaternions q such that $q^{2}+1=0$.
3. Divide $10+3 i$ by $1+i$ with remainder in the ring of Gaussian numbers $\mathbb{Z}[i]$. (Remember that the ring $\mathbb{Z}[i]$ is euclidian with the "degree" function $\left.d(z)=|z|^{2}.\right)$
4. Prove that $M \otimes R \simeq M$, for any commutative ring R and R-module M. (Here $M \otimes R$ is the tensor product of the R-module M and the R-module R.)
5 . Let R be the ring of all rational numbers m / n with odd n.
(a) Which elements of R are invertible?
(b) Which elements of R are irreducible?
(c) Is the ring R factorial?
(d) Is the ring R a principal ideal domain?
(e) Is the ring R euclidian?
(f) Is the polynomial $\frac{1}{3} x^{5}+2 x+\frac{2}{5}$ irreducible over R ?
5. Prove that for any finite field F of prime characteristic p the map $x \mapsto x^{p}$ is an automorphism of F. Give an example of a field of prime characteristic p for which the map $x \longmapsto x^{p}$ is not an automorphism.
6. Let F be a finite field. Prove that $F[x]$ contains irreducible polynomials of arbitrarily high degree.
