Math 211 Final Exam (Group Theory) Ali Nesin

- 1. Let n > 1 be an integer and let m be a divisor of n.
 - a) Show that $\mathbb{Z}/n\mathbb{Z}$ has *m* elements whose order divides *m*.
 - b) How many elements does $\mathbb{Z}/n\mathbb{Z}$ have whose order is exactly *m*?
 - c) Show that a subgroup of a cyclic group is cyclic.
- 2. Let p be a prime. Suppose that G has a normal p-subgroup. Show that G has a normal and nontrivial abelian subgroup.
- 3. Let $p \le q$ be two primes and G a group of order pq. Show that if $q \not\equiv 1 \mod p$ then G is abelian.
- 4. Let p < q be two primes and G a group of order pq^2 . Show that if $q \not\equiv \pm 1 \mod p$ then G is abelian.
- 5. Let p < q be two primes with $q \equiv 1 \mod p$.
 - a) Show that there are at most *p* nonisomorphic groups of order *pq*.
 - b) Show that the upper bound *p* may be attained.
- 6. Let p and q be two primes and n a natural number. Let G be a group of order $p^n q$.
- a) Show that if $q \not\equiv 1 \mod p$ then G has a nontrivial normal abelian subgroup.
- b) Show that there is a sequence $1 = G_0 \le G_1 \le ... \le G_n \le G_{n+1}$ of normal subgroups such that G_{i+1}/G_i is of prime order.
- 7. Give the correct mathematical definition of the following "definition": A finite group G is called *solvable* if either G = 1 or there is a nontrivial normal abelian subgroup A such that G/A is solvable.
- 8. a) Show that if H_1 and H_2 are two subgroups of finite index of the group G, then $H_1 \cap H_2$ is a subgroup of finite index of G.

b) Show that if H is a subgroup of finite index of the group G, then H has finitely many conjugates.

c) Show that if *H* is a subgroup of finite index of the group *G*, then there is a normal subgroup *N* of finite index in *G* such that $N \subseteq H$.

- 9. Let $H \le G$ be a subgroup of finite index, say *n*. Let $X = G/H = \{xH : x \in G\}$ (the left coset space). For $g \in G$ and $xH \in X$, define $\varphi_g(xH) = gxH$.
 - a) Show that φ_g is a bijection of *X*, so that $\varphi_g \in \text{Sym}(X)$.
 - b) For $g \in G$, let $\varphi(g) = \varphi_g \in \text{Sym}(X)$. Show that φ is a group homomorphism from *G* into Sym(X).
 - c) Show that $\operatorname{Ker}(\varphi) = \bigcap_{g \in G} H^g \leq H$.
 - d) Show that $[G : Ker(\varphi)]$ divides n!
 - e) Compare this with #8c.
- 10. Let *G* be a finite group and *p*, the smallest prime that divides |G|. Let *H* be a subgroup of *G* of index *p*. Show that $H \triangleleft G$.