MATH 211
BASIC ALGEBRA 1
Final exam
Prof. Oleg Belegradek

1. Prove that any nonempty subset of a finite group closed under the group operation is a subgroup. Show that for infinite groups it is not true.

2. For which n the group S_5 has an element of order n?

3. Prove that the groups \mathbb{Z}^n and \mathbb{Z}^m are isomorphic only if $n = m$.

4. Prove that any group of order 4 is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$.

5. Prove that for finite abelian groups a converse of Lagrange’s theorem holds: if G is a finite abelian group of order n then for any positive divisor d of n there is a subgroup of G of order d.

6. For which integers n the quotient ring $\mathbb{Q}[x]/(x^2 - n)\mathbb{Q}[x]$ is a field?

7. Let R be a nonzero commutative ring without ideals except for R and 0. Prove that either R is a field, or R is of prime order and $xy = 0$ for all $x, y \in R$.

8. Let p be a prime, and $\alpha \in \mathbb{C}$, $\alpha \neq 1$, $\alpha^p = 1$. Find the minimal polynomial of α over \mathbb{Q}.

9. Prove that the only automorphism of the field of real numbers is the identity mapping.