MATH 211 Basic Algebra

Problem Set 8

1. Find the ring of fractions of \(\mathbb{Z}_0 \) over the multiplicative subset \{1, 2, 4\}.

2. Let \(C[0, 1] \) be the ring of continuous real functions on \([0, 1]\). For \(0 \leq c \leq 1 \) let \(I_c \) be the set of all \(f \) in \(C[0, 1] \) such that \(f(c) = 0 \). Prove that
 (a) \(I_c \) is a maximal ideal of \(C[0, 1] \);
 (b) any maximal ideal of \(C[0, 1] \) is of the form \(I_c \) for some \(c \).

3. Find all maximal ideals of the ring \(\mathbb{Z}_n \).

4. Show that a skew field has no proper non-zero one-side (that is, left or right) ideals.

5. Let \(R \) be a associative ring with non-zero multiplication (that is, there are \(x, y \in R \) such that \(xy \neq 0 \)). Suppose \(R \) has no proper nonzero one-side ideals. Prove that \(R \) is a skew field. (Hint: first prove that \(R \) has no zero divisors, then prove that \(R \) has a unit, and use these facts to prove that \(R \) is a skew field.)

6. Let \(R \) be an associative ring with unit and without zero divisors. Suppose for any descending sequence of left ideals \(I_1 \supseteq I_2 \supseteq \ldots \) there is \(n_0 \) such that \(I_n = I_{n_0} \) for \(n \geq n_0 \). Prove that \(R \) is a skew field.

7. Prove that for any field \(F \) the ring \(M_n(F) \) has no proper nonzero ideals.

8. Prove that the ideals of the ring \(M_n(\mathbb{Z}) \) are exactly the subsets \(M_n(k\mathbb{Z}) \), where \(k \in \mathbb{Z} \).

9. Find the greatest common divisor of the rational polynomials
 \[x^4 + x^3 - 3x^2 - 4x - 1 \quad \text{and} \quad x^3 + x^2 - x - 1 \]
 and its linear expression in terms of them.

10. Find the greatest common divisor of the polynomials over the two-element field \(F_2 \)
 \[x^5 + x^4 + 1 \quad \text{and} \quad x^4 + x^2 + 1 \]
 and its linear expression in terms of them.

11. Let \(f(x), g(x), h(x) \) be polynomials over a field \(F \). Prove that \(f \) is coprime with \(g \) and \(h \) then \(f \) is coprime with \(gh \).

12. Calculate \(\varphi(2002), \varphi(12000) \), where \(\varphi \) is the Euler function.

13. Find the remainder of \(3^{578} \) modulo 308.

14. Prove that the quotient-rings \(\mathbb{Q}[x]/(x^2 - 2)\mathbb{Q}[x] \) and \(\mathbb{Q}[x]/(x^2 - 3)\mathbb{Q}[x] \) are fields. Are they isomorphic?

15. Is the quotient ring \(\mathbb{Q}[x]/(x^2 - 1)\mathbb{Q}[x] \) a field?