Algebra

(Math 221 for Math) Final Exam

January 1999 Ali Nesin & Özlem Beyarslan

1. How many elements does Hom($\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$) have?

2. Show that < 5, 5 X^6 + X^2 + 2 > is a maximal ideal of the ring of polynomials $\mathbb{Z}[X]$.

3. Find a maximal ideal of the ring of continuous functions from \mathbb{R} into \mathbb{R} .

4. Let *R* be a commutative ring with 1. An element *e* is called **idempotent** if $e^2 = e$.

4a. Show that if *e* and *f* are idempotents, then so are 1 - e, *ef* and e + f - ef. Show that a ring without zerodivisors has only 2 idempotents.

4b. Defining \otimes and \oplus on the set of I(R) of the idempotents as,

$$e \otimes f = ef$$

and

$$e \oplus f = e + f - 2ef$$

show that I(R) becomes almost a ring.

4c. On I(R) define the relation \leq by

$$e \leq f \Leftrightarrow ef = e.$$

Show that \leq is an order on I(R).

4d. Show that for all $e, f \in I(R)$, $ef \leq e$.

4e. An element $e \in I(R) \setminus \{0\}$ is called **atomic** if it is a minimal nonzero element of I(R). Show that if *e* and *f* are two different atomic idempotents, then ef = 0.

4f. Show that for $e \in I(R)$, Re is a ring with identity (but not necessarily a subring of R).

4g. Show that for $e \in I(R)$, $R \approx Re \oplus R(1 - e)$ (as rings).

4h. Find the idempotents of the ring $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$. Find its atomic idempotents.

4i. Find the idempotents of the ring $\mathbb{R}[X]/\langle X^2 - X \rangle$. Find its atomic idempotents and its decomposition as in 4g.

4j. Let us call a ring **atomic** if every descending chain of idempotents is stationary. Show that every ring with DCC on the ideals (such a ring is called **Artinian**) is atomic.

4k. Find a nonatomic ring.

5. Let *G* be a group of order *mn* where (m, n) = 1. Assume that *G* has two normal subgroups *K* and *H* of order *m* and *n* respectively. Show that $G \approx H \times K$.

6. Conclude from 5 and the Sylow Theorems that a group of order 15 is cyclic.