Set Theory

Summer Midterm III
18th of June, 1999
Ali Nesin

1. Let X be a nonempty set that contains its elements as a subset, i.e. if $x \in X$ then $x \subseteq X$. Show that $\varnothing \in X$. Find such a set which is not an ordinal. ($2+4$ pts.)
2. Find a nonordinal X which is totally ordered by the membership relation \in.
3. Find two ordinals α and β and a nonincreasing map $f: \alpha \rightarrow \beta$ such that $f(x)<f\left(x^{+}\right)$for all $x \in \alpha$.
4. Prove that the set of all finite subsets of ω is countable.
5. Show that if every countable subset of a totally ordered set X is well-ordered, then X is well-ordered.
6. Show that if α is an infinite cardinal, then $\alpha \alpha=\alpha$.
