Set Theory

Summer Homework 18th of June, 1999 Ali Nesin

1. Let α and β be two ordinals. Show that if α and β are isomorphic as well-ordered sets, then $\alpha = \beta$.

2. Show that every set of ordinals is well-ordered by the membership relation.

3. Let *X* and *Y* be two sets. Show that either there is a one-to-one map from *X* into *Y* or from *Y* into *X*. (**Hint:** This result is false without the AC, so your proof must use AC either implicitly or explicitly).

4. A nonzero ordinal α is called a **limit ordinal**, if it has no predecessor, i.e. if there is no β such that $\beta^+ = \alpha$. Show that ω is the least limit ordinal. What is the next limit ordinal?

5. Let *X* and *Y* be sets and $f: X \to Y$ be an onto map. Show that there is a one-to-one map $g: Y \to X$ such that $f \circ g = \text{Id}_Y$.

6. Recall that a nonzero ordinal α is called a **limit ordinal**, if it has no predecessor, i.e. if there is no β such that $\beta^+ = \alpha$. Show that if λ is a limit ordinal, then $\alpha + \lambda$ is a limit ordinal for all ordinals α .

7. Show that for every ordinal α , there is an ordinal β such that $\alpha < \beta$ and there is no function from α onto β .