Ordinal Arithmetic

Summer Midterm III 18th of June, 1999 Ali Nesin

Let α and β be two ordinals. As in the previous midterm, wellorder the set $(\alpha \times \{0\}) \cup (\beta \times \{1\})$ by putting the elements of β to the end of α . As every set, this new well-ordered set is isomorphic to a unique ordinal, that we will call $\alpha + \beta$.

Below, α , β , γ denote arbitrary ordinals.

1. Show that $0 + \alpha = \alpha + 0 = \alpha$ and $\alpha + 1 = \alpha^+$

2. Show that $n + \alpha = \alpha$ if $\alpha > \omega$ and $n \in \omega$.

3. Show that if $\beta < \alpha$, then $\beta + \gamma = \alpha$ for some γ .

4. Show that if $\alpha + \beta = \alpha + \gamma$ for some α , then $\beta = \gamma$.

5. Say, without necessarily a rigourous proof, why

 $\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma.$

Let α and β be two ordinals. Order the set $\alpha \times \beta$ as follows:

(a, b) < (a', b') iff either b < b' or (b = b' and a < a').

This is the reverse lexicographic order. As we have seen in the previous midterm, it is a well-order and therefore is isomorphic to a unique ordinal $\alpha\beta$.

Below, α , β , γ denote arbitrary ordinals.

6. Show that $\alpha 0 = 0\alpha = 0$ and $1\alpha = \alpha 1 = \alpha$.

7. Show that $2\omega = \omega$.

8. Show that $\omega \omega \neq \omega$.

8. One can show that the equalities $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ and $\alpha(\beta\gamma) = (\alpha\beta)\gamma$ hold. Show that the equality $(\alpha + \beta)\gamma = \alpha\beta + \beta\gamma$ does not hold in general.

9. For ordinals α , β and λ define

 $\alpha^{0} = 1$ $\alpha^{\beta+1} = \alpha^{\beta} \alpha$ $\alpha^{\lambda} = \bigcup_{\beta < \lambda} \alpha^{\beta} \text{ if } \lambda \text{ is a limit ordinal.}$

Show that $0^{\alpha} = 0$ and $1^{\alpha} = 1$.

10. Show that $2^{\omega} = \omega$.

11. One can check that the equalities $\alpha^{\beta + \gamma} = \alpha^{\beta} \alpha^{\gamma}$ and $(\alpha^{\beta})^{\gamma} = \alpha^{\beta\gamma}$ always hold. Show that the equality $(\alpha\beta)^{\gamma} = \alpha^{\gamma} \beta^{\gamma}$ does not always hold.