Ordinal Arithmetic

Summer Midterm III

18th of June, 1999
Ali Nesin
Let α and β be two ordinals. As in the previous midterm, wellorder the set $(\alpha \times\{0\}) \cup(\beta \times\{1\})$ by putting the elements of β to the end of α. As every set, this new well-ordered set is isomorphic to a unique ordinal, that we will call $\alpha+\beta$.

Below, α, β, γ denote arbitrary ordinals.

1. Show that $0+\alpha=\alpha+0=\alpha$ and $\alpha+1=\alpha^{+}$
2. Show that $n+\alpha=\alpha$ if $\alpha>\omega$ and $n \in \omega$.
3. Show that if $\beta<\alpha$, then $\beta+\gamma=\alpha$ for some γ.
4. Show that if $\alpha+\beta=\alpha+\gamma$ for some α, then $\beta=\gamma$.
5. Say, without necessarily a rigourous proof, why

$$
\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma
$$

Let α and β be two ordinals. Order the set $\alpha \times \beta$ as follows:
$(a, b)<\left(a^{\prime}, b^{\prime}\right)$ iff either $b<b^{\prime}$ or ($b=b^{\prime}$ and $a<a^{\prime}$).
This is the reverse lexicographic order. As we have seen in the previous midterm, it is a well-order and therefore is isomorphic to a unique ordinal $\alpha \beta$.

Below, α, β, γ denote arbitrary ordinals.
6. Show that $\alpha 0=0 \alpha=0$ and $1 \alpha=\alpha 1=\alpha$.
7. Show that $2 \omega=\omega$.
8. Show that $\omega \omega \neq \omega$.
8. One can show that the equalities $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$ and $\alpha(\beta \gamma)=(\alpha \beta) \gamma$ hold. Show that the equality $(\alpha+\beta) \gamma=\alpha \beta+\beta \gamma$ does not hold in general.
9. For ordinals α, β and λ define

$$
\begin{aligned}
& \alpha^{0}=1 \\
& \alpha^{\beta+1}=\alpha^{\beta} \alpha \\
& \alpha^{\lambda}=\bigcup_{\beta<\lambda} \alpha^{\beta} \text { if } \lambda \text { is a limit ordinal. }
\end{aligned}
$$

Show that $0^{\alpha}=0$ and $1^{\alpha}=1$.
10. Show that $2^{\omega}=\omega$.
11. One can check that the equalities $\alpha^{\beta+\gamma}=\alpha^{\beta} \alpha^{\gamma}$ and $\left(\alpha^{\beta}\right)^{\gamma}=$ $\alpha^{\beta \gamma}$ always hold. Show that the equality $(\alpha \beta)^{\gamma}=\alpha^{\gamma} \beta^{\gamma}$ does not always hold.

