Math 111

Midterm 2
Şubat 1999
Ali Nesin
Hint: Do not be frightened by the look of the questions.

I. Combinatorics.

Given a natural number n, define n ! by induction as follows.

$$
\begin{aligned}
& 0!=1 \\
& (n+1)!=n!(n+1)
\end{aligned}
$$

For natural numbers $0 \leq k \leq n$, define, $\binom{n}{k}=\frac{n!}{k!(n-k)!}$
I.1. Show that $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$.
I.2. Conclude that $\binom{n}{k}$ is a natural number.
1.3. Show that for all natural numbers n and rational numbers x and y,

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

II. Logarithmic Constant e

II.1. Show that an increasing sequence which is bounded above is a Cauchy sequence.
II.2. Show that $n!>2^{n}$ for large enough n.
II.3. Conclude from I. 3 and II. 2 that the sequence $a_{n}=(1+1 / n)^{n}$ is bounded above (e.g. by $2+19 / 24$).
II.4. Show that $a_{n}=(1+1 / n)^{n}$ is an increasing sequence for $n>1$. (Hint: Show first that $(x-1)^{n} \geq x^{n}-n x^{n-1}$ for $x \geq 1$. Then show that $a_{n-1} \leq a_{n}$).
II.5. Conclude that the sequence $a_{n}=(1+1 / n)^{n}$ is a Cauchy sequence.

III. Finiteness

We give four definitions of finiteness.
We call a set X 1-finite if there is a bijection between X and a natural number.

We call a set X 2-finite if every nonempty set of subsets of X has a maximal element (for inclusion), i.e. if $\forall Y \subseteq \boldsymbol{P}(X) \exists A \in Y \forall B \in Y(A \subseteq B \rightarrow A=B)$.

We call a set X 3-finite if every nonempty set of subsets of X has a minimal element (for inclusion).

We call a set X 4-finite if there is no bijection between X and a proper subset of X.
III.1. Show that a set is 2 -finite if and only if it is 3-finite.
III.2. Show that a natural number is 2 -finite.
III.3. Conclude that if a set is 1 -finite then it is 2 and 3 -finite.
III.4. Show that if a set is 2 or 3 -finite then it is 4 -finite.
III.5. Conclude that the set \mathbb{N} of natural numbers is not i-finite for any $i=$ 1,2,3,4.
III.6. Conclude that every natural number is i-finite for any $i=1,2,3,4$.

