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To solve a question, you may assume you have solved all the previous questions. 

Take your time. Start from the first question and go in that order. Only rarely, and 

certainly after giving a long thought, that you should skip a question that you were 

unable to solve. Do not try to cheat, you won’t succeed. Do not lie to yourself, be 

honest. Do not try to succeed at any rate. Write clearly, with brieve and correct 

English sentences. Do not use symbols like ∀, ∃, ⇒ unnecessarily. 

 

Let (X, <) be a totally ordered set. We say that (X, <) is a well-ordered set (or that 

< well-orders X) if every nonempty subset of X contains a minimal element (a least) 

for that order, i.e., if for every nonempty subset A of X, there is an m ∈ A such that m 

≤ a for all a in A. Clearly, given A, such an m is unique. In particular if X ≠ ∅, X has 

a least element. 

 

1. Give two examples of well-ordered sets one of which is infinite. (2 pts.) 

 

2. Show that the minimal element m of a nonempty subset A of a totally ordered 

set (X, <) is unique. (3 pts.) 

 

If X is a set, we set X 
+
 = X ∪ {X}.  

 

2. Assume X is a well-ordered set and that X ∉ X. Order X 
+
 by extending the 

order of X and by stating that X is larger than its elements (i.e. to get X
+
, put the 

element X to the very end of X). Show that X 
+
 is also a well-ordered set. (5 pts.) 

 

3. If (X, <) is an ordered set and x ∈ X, we define the initial segment of x as 

s(x) = {y ∈ X : y < x}. 

What is s(o) where o is the minimal element of X? (2 pts.) 

 

4. Let X and Y be two well-ordered sets. Let 

A = (X × {0}) ∪ (Y × {1}). 

Order A as follows: For all x, x1, x2 ∈ X and for all y, y1, y2 ∈ Y 

(x1, 0) < (x2, 0) iff x1 < x2. 

(y1, 1) < (y2, 1) iff y1 < y2. 

(x, 0) < (y, 1). 

 Show that the above relation well-orders A. (4 pts.) 

 

5. (Transfinite Induction) Let (X, <) be a well-ordered set and let A ⊆ X be such 

that for all x ∈ X, if s(x) ⊆ A, then x ∈ A. Show that A = X. (10 pts.) 

 

An ordinal is a well-ordered set α such that β = s(β) for all β ∈ α. Thus an 

ordinal is a set α well-ordered by the relation ∈, i.e. the binary relation < on α 

defined by “β < γ iff β ∈ γ” well-orders α. 



 

6. Show that ∅ is an ordinal. (2 pts.) 

 

7. Show that if α ≠ ∅ is an ordinal, then ∅ ∈ α and ∅ is the least element of α. (7 

pts.) 

 

8. Show that if α is an ordinal and β ∈ α, then β ⊂ α. (2 pts.) 

 

9. Show that every element of an ordinal is an ordinal. (2 pts.) 

 

10. Show that if α is an ordinal, then α 
+
 is also an ordinal. (2 pts.) 

 

9. Let α be an ordinal and β ∈ α. Show that either β 
+
 ∈ α or β 

+
 = α. (8 pts.) 

 

10. In exercise 3 take X = ω and Y = 1 = {0}. Show that the well-ordered set A 

obtained there is isomorphic to the ordinal ω+
, i.e. there is an order-preserving 

bijection from A onto ω+
. (4 pts.) 

 

11. In exercise 3 take X = 1 = {0} and Y = ω. Show that the well-ordered set A 

obtained there is isomorphic to ω, i.e. there is an order-preserving bijection from A 

onto ω. (4 pts.) 

 

12. Let α, β be ordinals. Show that either α < β or α = β or β < α. (18 pts.) 

 

13. Show that the union of a set of ordinals is an ordinal. (3 pts.) 

 

14. Let α and β be two ordinals. Let f : α → β be a strictly increasing function. 

Show that if f is onto, then α = β and f is the identity map. (18 pts.) 

 

15. Show that every well-ordered set is isomorphic to an ordinal. (18 pts.) 

 


