Math 111

Midterm Kasım 1998 Ali Nesin

Recall that $A \Delta B = (A \setminus B) \cup (B \setminus A)$, P(X) = The set of subsets of X, N = {0, 1, 2, 3,...} is the set of natural numbers (we assume it is a set).

I. Let *X* be a set. Show that there is no function from *X* onto P(X).

II. We define a total order on $\mathbb{N} \times \mathbb{N}$ as follows: (*x*, *y*) < (*z*, *t*) iff either *x* < *z* or (*x* = *z* and *y* < *t*).

IIa. Find the elements of the set $\{\alpha \in \mathbb{N} \times \mathbb{N} : (2, 3) < \alpha < (3, 2)\}$.

IIb. Can $(\mathbb{N} \times \mathbb{N}, <)$ be isomorphic to $(\mathbb{N}, <)$? Justify your answer.

III. An **equivalence relation** on a set *X* is a subset *E* of $X \times X$ such that **i**) $(x, x) \in E$ for all $x \in X$. **ii**) If $(x, y) \in E$ then $(y, x) \in E$ for all $x, y \in X$. **iii**) If $(x, y) \in E$ and $(y, z) \in E$ then $(x, z) \in E$ for all $x, y, z \in X$. Very often, one writes $x \equiv y$ instead of $(x, y) \in E$. For example, $E = \{(x, x): x \in X\}$ is an equivalence relation on *X*. Let *Y* be a set and set X = P(Y) (the set of subsets of *X*). On *X*, define, $A \equiv B$ iff $A \Delta B$ is finite. **IIIa.** Show that this defines an equivalence relation on *X*, i.e. show that **i**) $A \equiv A$, **ii**) If $A \equiv B$ then $B \equiv A$, **iii**) If $A \equiv B$ and $B \equiv C$ then $A \equiv C$. **IIIb.** Find all $A \in X$ such that $A \equiv \emptyset$.

IIIc. Find all $A \in X$ such that $A \equiv X$.

IV. (Cantor-Schröder-Bernstein) Let *A* be a set and *A'* a subset of *A*. Assume that there is a bijection $f: A \to A'$ between *A* and *A'*. Let $A' \subseteq B \subseteq A$. The purpose of this exercise is to show that there is a bijection between *B* and *A*.

Let $Q = B \setminus A'$. Let $\Gamma = \{X \subseteq A : Q \cup f(X) \subseteq X\}$. Note that Let $T = \cap \Gamma = \bigcap_{X \in \Gamma} X$. **IVa.** Show that $T \in \Gamma$. **IVb.** Show that $Q \cup f(T) \in \Gamma$. **IVc.** Show that $T = Q \cup f(T)$. (Hint: Use a and b). **IVd.** Show that $B = T \cup (A' \setminus f(T))$. (Hint: Use c). **IVe.** Show that $T \cap (A' \setminus f(T)) = \emptyset$. **IVf.** Show that there is a bijection between *B* and *A*. (Hint: Use d and e).

V. Let A and B be two sets. Assume that there are one-to-one maps $f: A \to B$ and $g: B \to A$. Show that there is a bijection between A and B. (Hint: Consider gf(A) and use problem IV).