Math 111

Midterm
Kasım 1998
Ali Nesin

Recall that $A \Delta B=(A \backslash B) \cup(B \backslash A), P(X)=$ The set of subsets of $X, \mathbf{N}=\{0,1$, $2,3, \ldots\}$ is the set of natural numbers (we assume it is a set).
I. Let X be a set. Show that there is no function from X onto $P(X)$.
II. We define a total order on $\mathbb{N} \times \mathbb{N}$ as follows:

$$
(x, y)<(z, t) \text { iff either } x<z \text { or }(x=z \text { and } y<t) .
$$

IIa. Find the elements of the set $\{\alpha \in \mathbb{N} \times \mathbb{N}:(2,3)<\alpha<(3,2)\}$.
IIb. Can $(\mathbb{N} \times \mathbb{N},<)$ be isomorphic to $(\mathbb{N},<)$? Justify your answer.
III. An equivalence relation on a set X is a subset E of $X \times X$ such that
i) $(x, x) \in E$ for all $x \in X$.
ii) If $(x, y) \in E$ then $(y, x) \in E$ for all $x, y \in X$.
iii) If $(x, y) \in E$ and $(y, z) \in E$ then $(x, z) \in E$ for all $x, y, z \in X$.

Very often, one writes $x \equiv y$ instead of $(x, y) \in E$.
For example, $E=\{(x, x): x \in X\}$ is an equivalence relation on X.
Let Y be a set and set $X=P(Y)$ (the set of subsets of X). On X, define, $A \equiv B$ iff $A \Delta B$ is finite.
IIIa. Show that this defines an equivalence relation on X, i.e. show that
i) $A \equiv A$,
ii) If $A \equiv B$ then $B \equiv A$,
iii) If $A \equiv B$ and $B \equiv C$ then $A \equiv C$.

IIIb. Find all $A \in X$ such that $A \equiv \varnothing$.
IIIc. Find all $A \in X$ such that $A \equiv \mathrm{X}$.
IV. (Cantor-Schröder-Bernstein) Let A be a set and A^{\prime} a subset of A. Assume that there is a bijection $f: A \rightarrow A^{\prime}$ betweeen A and A^{\prime}. Let $A^{\prime} \subseteq B \subseteq A$. The purpose of this exercise is to show that there is a bijection between B and A.

Let $Q=B \backslash A^{\prime}$.
Let $\Gamma=\{X \subseteq A: Q \cup f(X) \subseteq X\}$. Note that
Let $T=\cap \Gamma=\bigcap_{X \in \Gamma} X$.
IVa. Show that $T \in \Gamma$.
IVb. Show that $Q \cup f(T) \in \Gamma$.
IVc. Show that $T=Q \cup f(T)$. (Hint: Use a and b).
IVd. Show that $B=T \cup\left(A^{\prime} \backslash f(T)\right)$. (Hint: Use c).
IVe. Show that $T \cap\left(A^{\prime} \backslash f(T)\right)=\varnothing$.
IVf. Show that there is a bijection between B and A. (Hint: Use d and e).
V. Let A and B be two sets. Assume that there are one-to-one maps $f: \mathrm{A} \rightarrow B$ and $g: B \rightarrow A$. Show that there is a bijection between A and B. (Hint: Consider $g f(A)$ and use problem IV).

