Math 211 (Algebra)

Resit
15th of August, 1999
Ali Nesin
Rewiew of some of the definitions: G always denotes a group. For an element a of G, we define the conjugacy class of a to be the set

$$
a^{G}=\left\{g^{-1} a g: g \in G\right\} .
$$

We define the centralizer of a to be

$$
\mathrm{C}_{G}(a)=\{g \in G: g a=a g\} .
$$

The center of G is the set

$$
\mathrm{Z}(G)=\{z \in G: z g=g z\} .
$$

If H is a subgroup of G, the normalizer of H is

$$
\mathrm{N}_{G}(H)=\{g \in G \text { such that } g H=H g\},
$$

the left coset space of H is

$$
G / H=\{g H: g \in G\},
$$

and for $a \in G$,

$$
H^{a}=\left\{a^{-1} h a: h \in H\right\} .
$$

1. Show that

1a. $\mathrm{Z}(G) \triangleleft G$. (2 pts.)
1b. $\mathrm{C}_{G}(a) \leq G$. (2 pts.)
1c. $\mathrm{N}_{G}(H) \leq G$. (2 pts.)
1d. $H \triangleleft \mathrm{~N}_{G}(H)$. (2 pts.)
1e. $\mathrm{N}_{G}(H)$ is the largest subgroup of G that contains H and in which H is normal. (4 pts.)

2a. Find all the centralizers in $\operatorname{Sym}(4)$. (3 pts.)
2b. Find all subgroups of $\operatorname{Sym}(4)$. (3 pts.)
2c. Find all the normal subgroups of $\operatorname{Sym}(4)$? (3 pts .)
2d. Find all the conjugacy classes in $\operatorname{Sym}(4)$. (3 pts.)
3a. Show that any two conjugacy classes in a group are either equal or disjoint. (4 pts.)

3b. Show that the conjugacy classes partition G. (2 pts .)
3c. Show that the map $g \mathrm{C}_{G}(a) \rightarrow g a g^{-1}$ defines a bijection between $G / \mathrm{C}_{G}(a)$ and a^{G}. (4 pts.)

3d. Show that $a \in Z(G)$ iff $\left|a^{G}\right|=1$ iff $\mathrm{C}_{G}(a)=G$. (2 pts.)
3e. Assume G is finite. Show that $|G|=|Z(G)|+\sum_{\text {certain } a \notin Z(G)}\left|G / C_{G}(a)\right|$. (4 pts.)

3f. Assume G is a finite group of order p^{n} for some prime number p and a natural number n. Show that $Z(G) \neq 1$. (4 pts.)
4. Proceeding as in question 3 c show that there is a bijection between $G / \mathrm{N}_{G}(H)$ and the set $\left\{H^{g}: g \in G\right\}$. (6 pts.)
5. Let $\varphi: \mathbf{Z} \times \mathbf{Z} \times \mathbf{Z} \rightarrow \mathbf{Z} \times \mathbf{Z}$ be given by $\varphi(x, y, z)=(2 x-3 y, 4 x-3 z)$.

5a. Show that φ is a homomorphism of groups. (2 pts.)
5b. Is φ onto? (2 pts.)
5c. Show that $\operatorname{Ker}(\varphi)=\{(3 a, 2 a, 4 a): a \in \mathbb{Z}\}$. (2 pts. $)$
6. Show that $(\mathbb{Q} \times \mathbb{Q}) / \delta(\mathbb{Z} \times \mathbb{Z}) \approx \mathbb{Q} / \mathbb{Z} \times \mathbb{Q}$ where

$$
\delta(\mathbb{Z} \times \mathbb{Z})=\{(z, z): z \in \mathbb{Z}\}
$$

(10 pts.)

7a. Find a generator of the subgroup of \mathbb{Q}^{*} generated by $2 / 5$ and $4 / 7$. (2 pts.)
7b. Is the subgroup of \mathbb{Q}^{+}generated by $\left\{2^{n}: n \in \mathbb{Z}\right\}$ cyclic? (5 pts.)
7c. Is the subgroup of \mathbb{Q}^{*} generated by $\left\{2^{n}: n \in \mathbb{Z}\right\}$ cyclic? (3 pts.)
7d. Show the subgroup of \mathbb{R}^{*} generated by $\sqrt{ } 2$ and $\sqrt{ } 3$ is isomorphic to the subgroup of \mathbb{R}^{+}generated by $\sqrt{ } 2$ and $\sqrt{ } 3$. (4 pts .)

8a. Find three elements of order 2 of $\mathbb{R}^{*} /\langle\sqrt{ } 2\rangle$. (3 pts .)
8b. Is there an element of infinite order in \mathbb{Q} / \mathbb{Z} ? (3 pts .)
8c. Is there an element of finite order in \mathbb{R} / \mathbb{Q} ? (3 pts.)
9. Find a proper nontrivial normal subgroup of $\operatorname{Sym}(\mathbb{N})$. (6 pts.)
10. Show that $\operatorname{Sym}(\mathbb{N}) \approx \operatorname{Sym}(\mathbb{Z})$. (5 pts.)
11. Find a nonabelian group of order 8. (5 pts.)

