Notation:

\(\mathbb{N} \) = The set of natural numbers
\(\mathbb{Z} \) = The set of integers
\(\mathbb{Q} \) = The set of rational numbers
\(\mathbb{R} \) = The set of real numbers

1. Let \(a < b \) be two fixed real numbers. Find a bijection \(f_{a,b} \) between the open intervals \((0, 1)\) and \((a, b)\). What is its inverse? What is \(f_{a,b} \circ f_{c,d}^{-1} \)?

2. Find a bijection between \(\mathbb{R} \) and the open interval \((-1, 1)\).

3. Find a one-to-one map from \(\mathbb{N} \times \mathbb{N} \) into \(\mathbb{N} \).

4. Find a bijection between \(\mathbb{Z} \) and \(\mathbb{N} \).

5. Find a bijection between \(\mathbb{Q} \) and \(\mathbb{N} \).

6. Find a map \(f: \mathbb{R} \to \mathbb{R} \) such that \(\bigcap_{n \in \mathbb{N}} f^n(\mathbb{R}) = \emptyset \).

7. Show that there is no bijection between \(\mathbb{N} \) and the open (real) interval \((0, 1)\).