Introduction to Set Theory and Number Systems Remake Exam
 1996-7

Ali Nesin
Bilgi University
Math Department

Notation: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} denote respectively the set of natural numbers, integers, rational numbers and real numbers.

Note: Questions may or may not be independent of the preceeding ones. You should attempt to solve all the questions.

1. Let n be a fixed natural number. On the set \mathbb{N} of natural numbers, define the relation,

$$
x \equiv y \Leftrightarrow x+y \text { is divisible by } n .
$$

For what values of n is this an equivalence relation? For each such n, find \mathbb{N} / \equiv.
2. Let $f: X \rightarrow Y$ be a function. Recall that if A is a subset of $Y, f^{-1}(A)$ is defined to be as the set $\{x \in X: f(x) \in A\}$. If A is a subsets of Y, what is the relationship (in terms of inclusion and equality) between the sets $f^{-1}\left(A^{\mathrm{c}}\right)$ and $f^{-1}(A)^{\mathrm{c}}$. (Note that A^{c} denotes the set $Y \backslash A$.)
3. If X and Y are two topological spaces, a map $f: X \rightarrow Y$ is called continuous, if for any open subset U of $Y, f^{-1}(U)$ is an open subset of X. Show that a map $f: X \rightarrow Y$ is continuous if for any closed subset C of $Y, f^{-1}(C)$ is a closed subset of X.
4. Let X be any set. Show that there is no bijection between X and the set $\wp(X)$ of subsets of X. (Hint: Assume there is such a bijection, call it f :

$$
f: X \longrightarrow \wp(X) .
$$

Let $A=\{x \in X: x \notin f(x)\}$. Let $a \in X$ be such that $f(a)=A$. Try to decide whether $a \in A)$. Did you, by any chance, show more than what I have asked?
5. Show that if f o g (composition of two functions) is one-to-one, then g is also one-to-one. Give an example where f o g is one-to-one, but f is not. State and prove a similar result where "one-to-one" is replaced bu "onto".
6. Show that the rule $f(x)=x^{2}-x$ defines a map from \mathbb{N} into \mathbb{N}. Is this a one-toone map? Is it onto? The same question with $\mathbb{N} \backslash\{0,1\}$ instead of \mathbb{N}.
7. Find all bijections $f: \mathbb{N} \rightarrow \mathbb{N}$ such that if $x<y$ then $f(x)<f(y)$. The same question with \mathbb{Z} instead of \mathbb{N}.

