Introduction to Set Theory and Number Systems Remake Exam 1996-7

Ali Nesin Bilgi University Math Department

Notation: \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} denote respectively the set of natural numbers, integers, rational numbers and real numbers.

Note: Questions may or may not be independent of the preceeding ones. You should attempt to solve all the questions.

1. Let *n* be a fixed natural number. On the set \mathbb{N} of natural numbers, define the relation,

 $x \equiv y \Leftrightarrow x + y$ is divisible by *n*.

For what values of *n* is this an equivalence relation? For each such *n*, find $\mathbb{N} \neq \mathbb{N}$

2. Let $f: X \to Y$ be a function. Recall that if *A* is a subset of *Y*, $f^{-1}(A)$ is defined to be as the set $\{x \in X: f(x) \in A\}$. If *A* is a subsets of *Y*, what is the relationship (in terms of inclusion and equality) between the sets $f^{-1}(A^c)$ and $f^{-1}(A)^c$. (Note that A^c denotes the set $Y \setminus A$.)

3. If X and Y are two topological spaces, a map $f: X \to Y$ is called **continuous**, if for any open subset U of Y, $f^{-1}(U)$ is an open subset of X. Show that a map $f: X \to Y$ is continuous if for any closed subset C of Y, $f^{-1}(C)$ is a closed subset of X.

4. Let X be any set. Show that there is no bijection between X and the set $\wp(X)$ of subsets of X. (**Hint:** Assume there is such a bijection, call it *f*:

$$f: X \longrightarrow \mathscr{O}(X).$$

Let $A = \{x \in X : x \notin f(x)\}$. Let $a \in X$ be such that f(a) = A. Try to decide whether $a \in A$). Did you, by any chance, show more than what I have asked?

5. Show that if $f \circ g$ (composition of two functions) is one-to-one, then g is also one-to-one. Give an example where $f \circ g$ is one-to-one, but f is not. State and prove a similar result where "one-to-one" is replaced bu "onto".

6. Show that the rule $f(x) = x^2 - x$ defines a map from \mathbb{N} into \mathbb{N} . Is this a one-to-one map? Is it onto? The same question with $\mathbb{N} \setminus \{0,1\}$ instead of \mathbb{N} .

7. Find all bijections $f: \mathbb{N} \to \mathbb{N}$ such that if x < y then f(x) < f(y). The same question with \mathbb{Z} instead of \mathbb{N} .