Introduction to Set Theory and Number Systems Final Exam 1996-7

Ali Nesin Bilgi University

Notation: \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} denote respectively the set of natural numbers, integers, rational numbers and real numbers.

Note: Questions may or may not be independent of the preceeding ones. You should attempt to solve all the questions.

1a. By using the axioms of set theory show that a function (as it is defined during the lectures) is a set.

1b. Show that the collection of functions from a set *X* into a set *Y* is a set.

1c. Let $f: X \longrightarrow Y$ be a function. Recall that if A is a subset of $Y, f^{-1}(A)$ is defined to be as the set $\{x \in X: f(x) \in A\}$. If A and B are two subsets of Y, what is the relationship (in terms of inclusion and equality) between the sets

 $f^{-1}(A) \cup f^{-1}(B), f^{-1}(A \cup B), f^{-1}(A) \cap f^{-1}(B) \text{ and } f^{-1}(A \cap B)?$

1d. Show that the same kind of relations hold for an infinite family $(A_i)_{i \in I}$ of subsets of *Y* (instead of just two subsets).

1e. Let $f: X \to Y$ be a function and A a subset of Y. Is $A = f(f^{-1}(A))$ always? If so prove it, otherwise give a counterexample.

1f. Let $f: X \to Y$ be a function and A a subset of X. Is $A = f^{-1}(f(A))$ always? If so prove it, otherwise give a counterexample.

2a. Show that if $f \circ g$ (composition of two functions) is one-to-one, then g is one-to-one. Give an example where $f \circ g$ is one-to-one, but f is not.

2b. State a statement similar to the one above with "onto" instead of "one-to-one".

2c. Let $f: X \longrightarrow X$ be a function. Show that if f^n is a bijection for some positive integer *n*, then *f* is also a bijection. (Recall that f^n is *f* composed with itself *n* times).

3. If X and Y are two topological spaces, a map $f: X \to Y$ is called **continuous**, if for any open subset U of Y, $f^{-1}(U)$ is an open subset of X.

3a. Let *X* be a topological space and $f: X \to \mathbb{R}$ a function. Show that if the inverse image $f^{-1}(a,b)$ of an open interval (a,b) of \mathbb{R} is open in *X*, then *f* is continuous. (R is endowed with the usual topology generated by the open intervals).

3b. By using 3a, show that the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is continuous. **3c.** Give an example of a noncontinuous function from \mathbb{R} into \mathbb{R} .

3d. Assume the only open subsets of *X* are \emptyset and *X*. How can one characterize the continuous functions from *X* into a topological space *Y*?

3e. Find an infinite topological space X such that every function f from X into any topological space Y is continuous.

3f. As \mathbb{Z} is a subset of \mathbb{R} and \mathbb{R} is a topological space (in the usual sense), we may endow \mathbb{Z} with the induced topology. What are the open subsets of \mathbb{Z} with this topology?

4a. Let *x* be any set. Is there always a bijection between the sets \mathbb{N} and $\mathbb{N} \cup \{x\}$?

4b. Find a bijection between \mathbb{N} and \mathbb{Q} . If *f* is this bijection, what is *f*(10)?

4c. Is there a bijection *f* between \mathbb{N} and \mathbb{Q} that preserves the order, i.e. for which *x* < *y* implies *f*(*x*) < *f*(*y*)?

5. Let X be any set. Show that there is no bijection between X and the set P(X) of subsets of X. (Hint: Assume there is such a bijection, call it f:

$$f: X \longrightarrow \wp(X).$$

Let $A = \{x \in X : x \notin f(x)\}$. Let $a \in X$ be such that f(a) = A. Try to decide whether $a \in A$). Did you, by any chance, show more than what I have asked?