Introduction to Set Theory and Number Systems
 Final Exam
 1996-7

Ali Nesin
Bilgi University

Notation: $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} denote respectively the set of natural numbers, integers, rational numbers and real numbers.

Note: Questions may or may not be independent of the preceeding ones. You should attempt to solve all the questions.

1a. By using the axioms of set theory show that a function (as it is defined during the lectures) is a set.

1b. Show that the collection of functions from a set X into a set Y is a set.
1c. Let $f: X \longrightarrow Y$ be a function. Recall that if A is a subset of $Y, f^{-1}(A)$ is defined to be as the set $\{x \in X: f(x) \in A\}$. If A and B are two subsets of Y, what is the relationship (in terms of inclusion and equality) between the sets

$$
f^{-1}(A) \cup f^{-1}(B), f^{-1}(A \cup B), f^{-1}(A) \cap f^{-1}(B) \text { and } f^{-1}(A \cap B) ?
$$

1d. Show that the same kind of relations hold for an infinite family $\left(A_{i}\right)_{i \in I}$ of subsets of Y (instead of just two subsets).

1e. Let $f: X \rightarrow Y$ be a function and A a subset of Y. Is $A=f\left(f^{-1}(A)\right)$ always? If so prove it, otherwise give a counterexample.

1f. Let $f: X \rightarrow Y$ be a function and A a subset of X. Is $A=f^{-1}(f(A))$ always? If so prove it, otherwise give a counterexample.

2a. Show that if f o g (composition of two functions) is one-to-one, then g is one-to-one. Give an example where f o g is one-to-one, but f is not.

2b. State a statement similar to the one above with "onto" instead of "one-to-one".
2c. Let $f: X \longrightarrow X$ be a function. Show that if f^{n} is a bijection for some positive integer n, then f is also a bijection. (Recall that f^{n} is f composed with itself n times).
3. If X and Y are two topological spaces, a map $f: X \rightarrow Y$ is called continuous, if for any open subset U of $Y, f^{-1}(U)$ is an open subset of X.

3a. Let X be a topological space and $f: X \rightarrow \mathbb{R}$ a function. Show that if the inverse image $f^{-1}(a, b)$ of an open interval (a, b) of \mathbb{R} is open in X, then f is continuous. (R is endowed with the usual topology generated by the open intervals).

3b. By using 3a, show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is continuous.
3c. Give an example of a noncontinuous function from \mathbb{R} into \mathbb{R}.
3d. Assume the only open subsets of X are \varnothing and X. How can one characterize the continuous functions from X into a topological space Y ?

3e. Find an infinite topological space X such that every function f from X into any topological space Y is continuous.

3f. As \mathbb{Z} is a subset of \mathbb{R} and \mathbb{R} is a topological space (in the usual sense), we may endow \mathbb{Z} with the induced topology. What are the open subsets of \mathbb{Z} with this topology?

4a. Let x be any set. Is there always a bijection between the sets \mathbb{N} and $\mathbb{N} \cup\{x\}$?
4b. Find a bijection between \mathbb{N} and \mathbb{Q}. If f is this bijection, what is $f(10)$?
4c. Is there a bijection f between \mathbb{N} and \mathbb{Q} that preserves the order, i.e. for which x $<y$ implies $f(x)<f(y)$?
5. Let X be any set. Show that there is no bijection between X and the set $P(X)$ of subsets of X. (Hint: Assume there is such a bijection, call it f :

$$
f: X \longrightarrow \wp(X) .
$$

Let $A=\{x \in X: x \notin f(x)\}$. Let $a \in X$ be such that $f(a)=A$. Try to decide whether $a \in A)$. Did you, by any chance, show more than what I have asked?

