Introduction to Set Theory and Number Systems
Final Exam
1996-7
Ali Nesin
Bilgi University

Notation: \(\mathbb{N} \), \(\mathbb{Z} \), \(\mathbb{Q} \) and \(\mathbb{R} \) denote respectively the set of natural numbers, integers, rational numbers and real numbers.

Note: Questions may or may not be independent of the preceding ones. You should attempt to solve all the questions.

1a. By using the axioms of set theory show that a function (as it is defined during the lectures) is a set.

1b. Show that the collection of functions from a set \(X \) into a set \(Y \) is a set.

1c. Let \(f: X \rightarrow Y \) be a function. Recall that if \(A \) is a subset of \(Y \), \(f^{-1}(A) \) is defined to be as the set \(\{ x \in X : f(x) \in A \} \). If \(A \) and \(B \) are two subsets of \(Y \), what is the relationship (in terms of inclusion and equality) between the sets \(f^{-1}(A) \cup f^{-1}(B) \), \(f^{-1}(A \cup B) \), \(f^{-1}(A) \cap f^{-1}(B) \) and \(f^{-1}(A \cap B) \)?

1d. Show that the same kind of relations hold for an infinite family \((A_i)_{i \in I} \) of subsets of \(Y \) (instead of just two subsets).

1e. Let \(f: X \rightarrow Y \) be a function and \(A \) a subset of \(Y \). Is \(A = f(f^{-1}(A)) \) always? If so prove it, otherwise give a counterexample.

1f. Let \(f: X \rightarrow Y \) be a function and \(A \) a subset of \(X \). Is \(A = f^{-1}(f(A)) \) always? If so prove it, otherwise give a counterexample.

2a. Show that if \(f \circ g \) (composition of two functions) is one-to-one, then \(g \) is one-to-one. Give an example where \(f \circ g \) is one-to-one, but \(f \) is not.

2b. State a statement similar to the one above with “onto” instead of “one-to-one”.

2c. Let \(f: X \rightarrow X \) be a function. Show that if \(f^n \) is a bijection for some positive integer \(n \), then \(f \) is also a bijection. (Recall that \(f^n \) is \(f \) composed with itself \(n \) times).

3. If \(X \) and \(Y \) are two topological spaces, a map \(f: X \rightarrow Y \) is called **continuous**, if for any open subset \(U \) of \(Y \), \(f^{-1}(U) \) is an open subset of \(X \).

3a. Let \(X \) be a topological space and \(f: X \rightarrow \mathbb{R} \) a function. Show that if the inverse image \(f^{-1}(a,b) \) of an open interval \((a,b) \) of \(\mathbb{R} \) is open in \(X \), then \(f \) is continuous. (\(\mathbb{R} \) is endowed with the usual topology generated by the open intervals).

3b. By using 3a, show that the function \(f: \mathbb{R} \rightarrow \mathbb{R} \) given by \(f(x) = x^2 \) is continuous.

3c. Give an example of a noncontinuous function from \(\mathbb{R} \) into \(\mathbb{R} \).

3d. Assume the only open subsets of \(X \) are \(\emptyset \) and \(X \). How can one characterize the continuous functions from \(X \) into a topological space \(Y \)?

3e. Find an infinite topological space \(X \) such that every function \(f \) from \(X \) into any topological space \(Y \) is continuous.
3f. As \mathbb{Z} is a subset of \mathbb{R} and \mathbb{R} is a topological space (in the usual sense), we may endow \mathbb{Z} with the induced topology. What are the open subsets of \mathbb{Z} with this topology?

4a. Let x be any set. Is there always a bijection between the sets \mathbb{N} and $\mathbb{N} \cup \{x\}$?

4b. Find a bijection between \mathbb{N} and \mathbb{Q}. If f is this bijection, what is $f(10)$?

4c. Is there a bijection f between \mathbb{N} and \mathbb{Q} that preserves the order, i.e. for which $x < y$ implies $f(x) < f(y)$?

5. Let X be any set. Show that there is no bijection between X and the set $P(X)$ of subsets of X. (Hint: Assume there is such a bijection, call it f:

\[f: X \longrightarrow \mathcal{P}(X). \]

Let $A = \{ x \in X : x \notin f(x) \}$. Let $a \in X$ be such that $f(a) = A$. Try to decide whether $a \in A$.

Did you, by any chance, show more than what I have asked?