## Set Theory (Orders)

November the <sup>5th</sup>, 1999 Ali Nesin

An **preorder** on a nonempty set *X* is a subset *A* of  $X \times X$  such that

a) For any  $x \in X$ ,  $(x, x) \notin A$ .

b) For any  $x, y, z \in X$ , if  $(x, y) \in A$  and  $(y, z) \in A$ , then  $(x, z) \in A$ .

From now on *A* denotes a preorder on *X*. One most often writes  $x <_A y$ , or even x < y, instead of  $(x, y) \in A$ .

**1.** Let *B* be a set. For *U*,  $V \subseteq B$ , show that the relation  $U \subset V$  defines a preorder on the set  $\wp(B)$  of subsets of *B*.

**2.** Show that if  $(x, y) \in A$  for  $x, y \in X$ , then  $(y, x) \notin A$ .

**3.** Show that if (x, y) and  $(y, z) \in A$  for  $x, y, z \in X$ , then  $(z, x) \notin A$ .

**4.** A minimal element for the preorder is an element *x* such that  $(y, x) \notin A$  for any

 $y \in X$ . Show that if X is a finite set, then X has minimal and maximal elements.

**5.** Give an example of a preorder with two maximal elements but without minimal elements.

6. How many preorders are there on a set of two elements?

7. How many preorders are there on a set of three elements?

Let  $(X, \prec)$  and  $(Y, \prec)$  be two preorders. A **morphism** from  $(X, \prec)$  into  $(Y, \prec)$  is a map *f* from *X* into *Y* such that for any  $x_1, x_2 \in X$ ,  $x_1 < x_2$  iff  $f(x_1) \prec f(x_2)$ .

**8.** Show that a morphism is necessarily one-to-one.

9. Show that the composition of morphisms is a morphism.

A morphism *f* from (X, <) into  $(Y, \prec)$  is called an **isomorphism** if the map is onto. The identity map is clearly an isomorphism. The preorders (X, <) and  $(Y, \prec)$  are then said to be **isomorphic**.

**9.** Show that the inverse of an isomorphism from (X, <) into  $(Y, \prec)$  is an isomorphism from  $(Y, \prec)$  into (X, <)

**10.** How many nonisomorphic preorders are there on a set of three elements?

**11.** How many nonisomorphic preorders are there on a set of four elements?

**12.** Let  $\sigma \in \text{Sym}(B)$ . Show that  $\sigma$  gives rise (naturally) to an automorphism of the preorder (℘(B), ⊂). Conversely, show that every automorphism of the preorder (℘(B), ⊂) is of this form.

An **automorphism** of a preorder is an isomorphism from the preorder into itself. **12.** Find all the automorphisms of the following preorder



13. Find all the automorphisms of the following preorder



A **total order** is an order where any two elements are comparable, i.e. for any *x*, *y*  $\in X$ , either x < y or x = y or y < x (only one of the relations may hold). For example, the natural orders on  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$  and  $\mathbb{R}$  are total orders.

14. Show that any two total orders on a finite set *X* are isomorphic.

**15.** Find all the automorphisms of  $(\mathbb{N}, <)$ .

**16.** Find all the automorphisms of  $(\mathbb{Z}, <)$ .

17. Show that the total orders  $(\mathbb{N}, <)$  and  $(\mathbb{N} \setminus \{0\}, <)$  are isomorphic.

**18.** Show that the total orders  $(\mathbb{Z}, <)$  and  $(\mathbb{Z} \setminus \{5\}, <)$  are isomorphic.

**19.** Show that the total orders  $(\mathbb{N}, <)$  and  $(\mathbb{Z}, <)$  are not isomorphic.

**20.** Define a total order on the set  $\mathbb{N} \cup \{\infty\}$  by extending the total order of  $\mathbb{N}$  by adding  $n < \infty$  for all  $n \in \mathbb{N}$ . Show that  $\mathbb{N} \cup \{\infty\}$  and  $\mathbb{N}$  are not isomorphic.