Naive Set Theory<br>Work for Nesin Foundation<br>October 1999<br>Ali Nesin

1. Find $\cup m$ and $\cap m$ where $m$ is the set whose elements are

1a. subsets of $\mathbb{R}$ that contain the interval $(0,1)$.
$\mathbf{1 b}$. subsets of $\mathbb{R}$ that contain the integers.
1c. intervals of the form $(1 / 2-\varepsilon, 1 / 2+\varepsilon)$ for $\varepsilon>0$.
1d. intervals of the form $\left(1 / 2-\varepsilon, 1 / 2+\varepsilon^{2}\right)$ for $\varepsilon>0$.
1e. intervals of the form $(1 / n, x)$ for $n \in \mathbf{N} \backslash\{0,1,2,3,4\}$ and $2 / 3<x \leq 1$.
1f. intervals of the form $\left(1 / 2^{n}, 2^{n}\right)$ for $n \in \mathbf{N}$.
$\mathbf{1 g}$. subsets of a given set.
1e. subsets of $\mathbb{R}$ that contain all rational numbers.
2. For $A$ and $B$ two sets, let $A \Delta B=(A \cup B) \backslash(A \cap B)$.

2a. Show that $A \Delta B=(A \backslash B) \cup(B \backslash A)$.
2b. Show that $A \Delta A=\varnothing$.
2c. What can you say about $A \Delta B$ if $A \subseteq B$ ? Does the reverse statement hold?

2d. Show that $A \Delta B=B \Delta A$ for all $A$ and $B$.
2e. Show that $A \Delta \varnothing=A$ for all $A$.
2f. Show that $(A \Delta B) \Delta C=A \Delta(B \Delta C)$ for all $A, B$ and $C$.
3. Let $X, Y$ and $Z$ be three sets. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. We define a function $g$ o $f: X \rightarrow Z$ by the rule $(g$ o $f)(x)=g(f(x))$ for all $x \in X$. The function $g$ o $f$ is called the composition of $f$ and $g$.

3a. Let $\operatorname{Id}_{Y}: Y \rightarrow Y$ be defined by $\operatorname{Id}_{Y}(y)=y$ for all $y \in Y$. The function $\operatorname{Id}_{Y}$ is called the identity function on $Y$. Show that $\operatorname{Id}_{Y} \circ f=f$.

3b. Show that $g$ o $\mathrm{Id}_{Y}=g$.
3c. (Associativity of the composition) Let $X, Y, Z$ and $T$ be sets. Let $f: X \rightarrow Y, g$ $: Y \rightarrow Z$ and $h: Z \rightarrow T$ be three functions. Note that $(h \circ g)$ o $f$ and $h \circ(g$ o $f)$ both make sense and that they are both functions from $X$ into $T$. Show that $(h \circ g)$ o $f=h \circ$ ( $g \circ f$ ).

4a. Find three different functions from $\mathbb{N}$ into $\mathbb{N}$ such that $f^{2}=\operatorname{Id}_{\mathbb{N}}$. (Recall that $f^{2}$ stands for $f 0 f$ ).

4b. Find two different functions from $\mathbb{N}$ into $\mathbb{N}$ such that $f^{3}=\operatorname{Id}_{\mathbb{N}}$.
5. A function $f: X \rightarrow Y$ is said to be one-to-one if, for any $x_{1}, x_{2} \in X, x_{1}=x_{2}$ whenever $f\left(x_{1}\right)=f\left(x_{2}\right)$.

5a. Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are one-to-one, then so is $g$ o $f$.

5b. Let $f: X \rightarrow Y$ be a function. Show that $f$ is one-to-one if and only there is a function $g: Y \rightarrow X$ such that $g$ of is one-to-one if and only there is a function $g: Y \rightarrow$ $X$ such that $g$ o $f=\operatorname{Id}_{X}$.
6. A function $f: X \rightarrow Y$ is said to be onto if, for any $y \in Y$, there is an $x \in X$ such that $f(x)=y$.

6a. Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are onto, then so is $g$ o $f$.
$\mathbf{6 b}$. Let $f: X \rightarrow Y$ be a function. Show that $f$ is onto if and only there is a function $g: Y \rightarrow X$ such that $f$ o $g$ is onto if and only there is a function $g: Y \rightarrow X$ such that $f$ o $g=\operatorname{Id}_{Y}$.
7. A function $f: X \rightarrow Y$ is said to be a bijection if it is both onto and one-to-one.

7a. Show that $\mathrm{Id}_{X}$ is a bijection.
7b. Find a one-to-one function which is not a bijection.
7c. Find an onto function which is not a bijection.
7d. Show that if $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are bijections, then so is $g$ o $f$.
7e. Let $f: X \rightarrow Y$ be a function. Show that $f$ is a bijection if and only there is a function $g: Y \rightarrow X$ such that $f$ o $g=\mathrm{Id}_{Y}$ and $g$ o $f=\mathrm{Id}_{X}$.

7f. Show that a function $g$ as above is unique. This function is called the inverse of $f$ and is denoted by $f^{-1}$.

7g. Find a bijection from $\mathbf{N}$ into $\mathbf{N}$ such that $f^{n} \neq \operatorname{Id}_{\mathbf{N}}$ for all $n \in \mathbf{N} \backslash\{0\}$.
8. let $X$ be a set. the set of bijections from $X$ into $X$ is denoted by $\operatorname{Sym}(X)$.

8a. Show that $\operatorname{Sym}(X)$ has $n$ ! elements if $X$ has $n$ elements.
$\mathbf{8 b}$. Let $X=\{1,2\}$. Find all the elements of $\operatorname{Sym}(X)$.
8c. Let $X=\{1,2,3\}$. Find all the elements of $\operatorname{Sym}(X)$.
8d. Let $X=\{1,2,3,4\}$. Find all the elements of $\operatorname{Sym}(X)$.
8e. Show that $\operatorname{Sym}(X)$ has the following three properties:
(i) For all $f, g, h \in \operatorname{Sym}(X), f \circ(g \circ h)=(f \circ g)$ o $h$.
(ii) For all $f \in \operatorname{Sym}(X), f$ o $\operatorname{Id}_{X}=\operatorname{Id}_{X}$ o $f=f$.
(iii) For any $f \in \operatorname{Sym}(X)$, there exists a $g \in \operatorname{Sym}(X)$ such that $f$ o $g=g$ o $f=$ $\operatorname{Id}_{X}$.

8f. Show that $\operatorname{Id}_{X}$ is the only element of $\operatorname{Sym}(X)$ that satisfies $8 \mathrm{f}(\mathrm{ii})$.
8g. Show that, given $f \in \operatorname{Sym}(X)$, the element $g \in \operatorname{Sym}(X)$ as in $8 \mathrm{f}(\mathrm{iii})$ is unique. In case you did not show it before, show that this element $g$ is in fact $f^{-1}$.

