Naive Set Theory

Work for Nesin Foundation October 1999 Ali Nesin

- **1.** Find $\cup \mathcal{M}$ and $\cap \mathcal{M}$ where \mathcal{M} is the set whose elements are
 - **1a.** subsets of \mathbb{R} that contain the interval (0, 1).
 - **1b.** subsets of \mathbb{R} that contain the integers.
 - **1c.** intervals of the form $(1/2 \varepsilon, 1/2 + \varepsilon)$ for $\varepsilon > 0$.
 - **1d.** intervals of the form $(1/2 \varepsilon, 1/2 + \varepsilon^2)$ for $\varepsilon > 0$.
 - **1e.** intervals of the form (1/n, x) for $n \in \mathbb{N} \setminus \{0, 1, 2, 3, 4\}$ and $2/3 < x \le 1$.
 - **1f.** intervals of the form $(1/2^n, 2^n)$ for $n \in \mathbf{N}$.

1g. subsets of a given set.

1e. subsets of \mathbb{R} that contain all rational numbers.

2. For *A* and *B* two sets, let $A \Delta B = (A \cup B) \setminus (A \cap B)$.

2a. Show that $A \triangle B = (A \setminus B) \cup (B \setminus A)$.

2b. Show that $A \triangle A = \emptyset$.

2c. What can you say about $A \Delta B$ if $A \subseteq B$? Does the reverse statement hold?

2d. Show that $A \triangle B = B \triangle A$ for all *A* and *B*.

2e. Show that $A \Delta \emptyset = A$ for all *A*.

2f. Show that $(A \Delta B) \Delta C = A \Delta (B \Delta C)$ for all *A*, *B* and *C*.

3. Let *X*, *Y* and *Z* be three sets. Let $f : X \to Y$ and $g : Y \to Z$ be two functions. We define a function *g* o $f : X \to Z$ by the rule $(g \circ f)(x) = g(f(x))$ for all $x \in X$. The function *g* o *f* is called the **composition** of *f* and *g*.

3a. Let $Id_Y : Y \to Y$ be defined by $Id_Y(y) = y$ for all $y \in Y$. The function Id_Y is called the **identity function** on *Y*. Show that $Id_Y \circ f = f$.

3b. Show that $g \circ \operatorname{Id}_Y = g$.

3c. (Associativity of the composition) Let *X*, *Y*, *Z* and *T* be sets. Let $f: X \to Y$, *g* : $Y \to Z$ and $h: Z \to T$ be three functions. Note that $(h \circ g) \circ f$ and $h \circ (g \circ f)$ both make sense and that they are both functions from *X* into *T*. Show that $(h \circ g) \circ f = h \circ (g \circ f)$.

4a. Find three different functions from \mathbb{N} into \mathbb{N} such that $f^2 = \text{Id}_{\mathbb{N}}$. (Recall that f^2 stands for $f \circ f$).

4b. Find two different functions from \mathbb{N} into \mathbb{N} such that $f^3 = Id_{\mathbb{N}}$.

5. A function $f : X \to Y$ is said to be **one-to-one** if, for any $x_1, x_2 \in X$, $x_1 = x_2$ whenever $f(x_1) = f(x_2)$.

5a. Show that if $f: X \to Y$ and $g: Y \to Z$ are one-to-one, then so is $g \circ f$.

5b. Let $f: X \to Y$ be a function. Show that f is one-to-one if and only there is a function $g: Y \to X$ such that $g \circ f$ is one-to-one if and only there is a function $g: Y \to X$ such that $g \circ f = \operatorname{Id}_X$.

6. A function $f: X \to Y$ is said to be **onto** if, for any $y \in Y$, there is an $x \in X$ such that f(x) = y.

6a. Show that if $f: X \to Y$ and $g: Y \to Z$ are onto, then so is $g \circ f$.

6b. Let $f: X \to Y$ be a function. Show that f is onto if and only there is a function $g: Y \to X$ such that $f \circ g$ is onto if and only there is a function $g: Y \to X$ such that $f \circ g$ = Id_Y.

7. A function $f: X \to Y$ is said to be a **bijection** if it is both onto and one-to-one. 7a. Show that Id_X is a bijection.

7b. Find a one-to-one function which is not a bijection.

7c. Find an onto function which is not a bijection.

7d. Show that if $f: X \to Y$ and $g: Y \to Z$ are bijections, then so is $g \circ f$.

7e. Let $f: X \to Y$ be a function. Show that f is a bijection if and only there is a function $g: Y \to X$ such that $f \circ g = Id_Y$ and $g \circ f = Id_X$.

7f. Show that a function g as above is unique. This function is called the **inverse** of f and is denoted by f^{-1} .

7g. Find a bijection from N into N such that $f^n \neq \text{Id}_N$ for all $n \in \mathbb{N} \setminus \{0\}$.

8. let *X* be a set. the set of bijections from *X* into *X* is denoted by Sym(X).

8a. Show that Sym(X) has n! elements if X has n elements.

8b. Let $X = \{1,2\}$. Find all the elements of Sym(X).

8c. Let $X = \{1,2,3\}$. Find all the elements of Sym(X).

8d. Let $X = \{1, 2, 3, 4\}$. Find all the elements of Sym(*X*).

8e. Show that Sym(*X*) has the following three properties:

(i) For all $f, g, h \in \text{Sym}(X)$, $f \circ (g \circ h) = (f \circ g) \circ h$.

(ii) For all $f \in \text{Sym}(X)$, $f \circ \text{Id}_X = \text{Id}_X \circ f = f$.

(iii) For any $f \in \text{Sym}(X)$, there exists a $g \in \text{Sym}(X)$ such that $f \circ g = g \circ f = .$

 Id_X .

8f. Show that Id_X is the only element of Sym(X) that satisfies 8f(ii).

8g. Show that, given $f \in \text{Sym}(X)$, the element $g \in \text{Sym}(X)$ as in 8f(iii) is unique. In case you did not show it before, show that this element g is in fact f^{-1} .