1. Find $\bigcup M$ and $\bigcap M$ where M is the set whose elements are
 1a. subsets of \mathbb{R} that contain the interval $(0, 1)$.
 1b. subsets of \mathbb{R} that contain the integers.
 1c. intervals of the form $(1/2 - \varepsilon, 1/2 + \varepsilon)$ for $\varepsilon > 0$.
 1d. intervals of the form $(1/2 - \varepsilon, 1/2 + \varepsilon^2)$ for $\varepsilon > 0$.
 1e. intervals of the form $(1/n, x)$ for $n \in \mathbb{N} \setminus \{0,1,2,3,4\}$ and $2/3 < x \leq 1$.
 1f. intervals of the form $(1/2^m, 2^n)$ for $n \in \mathbb{N}$.
 1g. subsets of a given set.
 1h. subsets of \mathbb{R} that contain all rational numbers.

2. For A and B two sets, let $A \Delta B = (A \cup B) \setminus (A \cap B)$.
 2a. Show that $A \Delta B = (A \setminus B) \cup (B \setminus A)$.
 2b. Show that $A \Delta A = \emptyset$.
 2c. What can you say about $A \Delta B$ if $A \subseteq B$? Does the reverse statement hold?
 2d. Show that $A \Delta B = B \Delta A$ for all A and B.
 2e. Show that $A \Delta \emptyset = A$ for all A.
 2f. Show that $(A \Delta B) \Delta C = A \Delta (B \Delta C)$ for all A, B and C.

3. Let X, Y and Z be three sets. Let $f : X \to Y$ and $g : Y \to Z$ be two functions. We define a function $g \circ f : X \to Z$ by the rule $(g \circ f)(x) = g(f(x))$ for all $x \in X$. The function $g \circ f$ is called the composition of f and g.
 3a. Let $\text{Id}_Y : Y \to Y$ be defined by $\text{Id}_Y(y) = y$ for all $y \in Y$. The function Id_Y is called the identity function on Y. Show that $\text{Id}_Y \circ f = f$.
 3b. Show that $g \circ \text{Id}_Y = g$.
 3c. (Associativity of the composition) Let X, Y, Z and T be sets. Let $f : X \to Y$, $g : Y \to Z$ and $h : Z \to T$ be three functions. Note that $(h \circ g) \circ f$ and $h \circ (g \circ f)$ both make sense and that they are both functions from X into T. Show that $(h \circ g) \circ f = h \circ (g \circ f)$.

4a. Find three different functions from \mathbb{N} into \mathbb{N} such that $f^2 = \text{Id}_\mathbb{N}$. (Recall that f^2 stands for $f \circ f$).
 4b. Find two different functions from \mathbb{N} into \mathbb{N} such that $f^3 = \text{Id}_\mathbb{N}$.

5. A function $f : X \to Y$ is said to be one-to-one if, for any $x_1, x_2 \in X$, $x_1 = x_2$ whenever $f(x_1) = f(x_2)$.
 5a. Show that if $f : X \to Y$ and $g : Y \to Z$ are one-to-one, then so is $g \circ f$.

5b. Let \(f : X \to Y \) be a function. Show that \(f \) is one-to-one if and only if there is a function \(g : Y \to X \) such that \(g \circ f \) is one-to-one if and only if there is a function \(g : Y \to X \) such that \(g \circ f = \text{Id}_Y \).

6. A function \(f : X \to Y \) is said to be onto if, for any \(y \in Y \), there is an \(x \in X \) such that \(f(x) = y \).

 6a. Show that if \(f : X \to Y \) and \(g : Y \to Z \) are onto, then so is \(g \circ f \).

6b. Let \(f : X \to Y \) be a function. Show that \(f \) is onto if and only if there is a function \(g : Y \to X \) such that \(g \circ f \) is onto and only if there is a function \(g : Y \to X \) such that \(f \circ g \) is onto.

7. A function \(f : X \to Y \) is said to be a bijection if it is both onto and one-to-one.

7a. Show that \(\text{Id}_X \) is a bijection.

7b. Find a one-to-one function which is not a bijection.

7c. Find an onto function which is not a bijection.

7d. Show that if \(f : X \to Y \) and \(g : Y \to Z \) are bijections, then so is \(g \circ f \).

7e. Let \(f : X \to Y \) be a function. Show that \(f \) is a bijection if and only if there is a function \(g : Y \to X \) such that \(f \circ g = \text{Id}_Y \) and \(g \circ f = \text{Id}_X \).

7f. Show that a function \(g \) as above is unique. This function is called the inverse of \(f \) and is denoted by \(f^{-1} \).

7g. Find a bijection from \(\mathbb{N} \) into \(\mathbb{N} \) such that \(f^n \neq \text{Id}_\mathbb{N} \) for all \(n \in \mathbb{N} \setminus \{0\} \).

8. Let \(X \) be a set. the set of bijections from \(X \) into \(X \) is denoted by \(\text{Sym}(X) \).

8a. Show that \(\text{Sym}(X) \) has \(n! \) elements if \(X \) has \(n \) elements.

8b. Let \(X = \{1,2\} \). Find all the elements of \(\text{Sym}(X) \).

8c. Let \(X = \{1,2,3\} \). Find all the elements of \(\text{Sym}(X) \).

8d. Let \(X = \{1,2,3,4\} \). Find all the elements of \(\text{Sym}(X) \).

8e. Show that \(\text{Sym}(X) \) has the following three properties:

 (i) For all \(f, g, h \in \text{Sym}(X) \), \(f \circ (g \circ h) = (f \circ g) \circ h \).

 (ii) For all \(f \in \text{Sym}(X) \), \(f \circ \text{Id}_X = \text{Id}_X \circ f = f \).

 (iii) For any \(f \in \text{Sym}(X) \), there exists a \(g \in \text{Sym}(X) \) such that \(f \circ g = g \circ f = \text{Id}_X \).

8f. Show that \(\text{Id}_X \) is the only element of \(\text{Sym}(X) \) that satisfies 8f(ii).

8g. Show that, given \(f \in \text{Sym}(X) \), the element \(g \in \text{Sym}(X) \) as in 8f(iii) is unique. In case you did not show it before, show that this element \(g \) is in fact \(f^{-1} \).