Math 111 Final Exam
 January 2005
 Ali Nesin

Notes. Yes or no answers will not be accepted. Proofs and disproofs are necessary.
Please make full sentences, with a subject and a verb, at least.
Do not use symbols such as $\exists, \forall, \Rightarrow$, etc.
Write neetly, clearly, understandably etc.

Let F be the set of functions from some open interval of \mathbb{R} containing 0 into \mathbb{R}. Note that two functions of f may have different domains. For $f, g \in F$, define the relation $f \equiv g$ by the condition "there is an open interval I containg 0 such that $f(x)=g(x)$ for all $x \in I$, i.e. if $f=g$ on some open interval containing 0 ".

1. Show that \equiv is an equivalence relation on F. (The equivalence class $[f]$ of f is called the germ off at 0). (6 pts.)

Proof: Reflexivity: If $f: I \rightarrow \mathbb{R}$ is a function from an open interval I containing 0 into \mathbb{R}, then of course $f(x)=f(x)$ for all $x \in I$. Therefore $f \equiv f$.

Symmetry: Let $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$ be two functions. (Here I and J are two open intervals both containing 0). Assume $f \equiv g$. Then $f(x)=g(x)$ for x in some open interval K containing 0 . (Note that K must be a subinterval of I and J because otherwise $f(x)$ and $g(x)$ are not defined). Thus $g(x)=f(x)$ for $x \in K$. Therefore $g \equiv f$.

Transitivity: Let $f: I \rightarrow \mathbb{R}, g: J \rightarrow \mathbb{R}$ and $h: K \rightarrow \mathbb{R}$ be three functions in F. (Here I, J and K are three open intervals all containing 0). Suppose $f \equiv g$ and $g \equiv h$. Thus $f(x)=g(x)$ for all x in some open interval A containing 0 and $g(x)=h(x)$ for all x in some open interval B containing 0 . (Here $A \subseteq I \cap J$ and $B \subseteq J \cap K$). Then $f(x)=h(x)$ for all $x \in A \cap B$. Since $A \cap B$ is an open interval containing 0 , this proves that $f \equiv g$.
2. Show that one is allowed to define addition and multiplication of elements of F / \equiv in a natural way, namely by the rules

$$
[f]+[g]=[f+g] \text { and }[f][g]=[f g]
$$

(10 pts.)
Proof: Note first that if $f: I \rightarrow \mathbb{R}$ and $g: J \rightarrow \mathbb{R}$, then as the domain of the functions $f+g$ and $f g$ we have to take $I \cap J$. Then $(f+g)(x)$ and $(f g)(x)$ can be defined as $f(x)+g(x)$ and $(f g)(x)=f(x) g(x)$.

Suppose $[f]=\left[f_{1}\right]$ and $[g]=\left[g_{1}\right]$, i.e. suppose $f \equiv f_{1}$ and $g \equiv g_{1}$. Thus there are open intervals A and B both containing 0 such that $f(x)=f_{1}(x)$ for all $x \in A$ and $g(x)=g_{1}(x)$ for all x $\in B$. Thus

$$
\left(f+f_{1}\right)(x)=f(x)+f_{1}(x)=g(x)+\mathrm{g}_{1}(x)=\left(g+g_{1}\right)(x)
$$

and

$$
\left(f f_{1}\right)(x)=f(x) f_{1}(x)=g(x) g_{1}(x)=\left(g g_{1}\right)(x)
$$

for all $x \in A \cap B$. Since $A \cap B$ is an open interval containing 0 , this proves that $f+f_{1} \equiv g+$ g_{1} and $f f_{1} \equiv g g_{1}$. Thus $\left[f+f_{1}\right]=\left[g+g_{1}\right]$ and $\left[f f_{1}\right] \equiv\left[g g_{1}\right]$.
3. Show that, with the above operations F / \equiv is a ring with identity, i.e., (Prove only A2, M1 and M2.)

A1. $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$ for all $\alpha, \beta, \gamma \in F / \equiv$.
A2. There is an element $0 \in F / \equiv$ such that $0+\alpha=\alpha+0=\alpha$ for all $\alpha \in F / \equiv$.
A3. For all $\alpha \in F / \equiv$ there is $a \beta \in F / \equiv$ such that $\alpha+\beta=\beta+\alpha=0$. (Here 0 is as in A2).
A4. $\alpha+\beta=\beta+\alpha$ for all $\alpha, \beta \in F / \equiv$.
M1. $(\alpha \beta) \gamma=\alpha(\beta \gamma)$ for all $\alpha, \beta, \gamma \in F / \equiv$.
M2. There is an element $1 \in F / \equiv$ such that $1 \cdot \alpha=\alpha \cdot 1=\alpha$ for all $\alpha \in F / \equiv$.
M3. $\alpha \beta=\beta \alpha$ for all $\alpha, \beta \in F / \equiv$.
D. $\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$ for all $\alpha, \beta, \gamma \in F / \equiv$.
(12 pts.)
Proof of A2: Let c_{0} denote the constant zero-function from \mathbb{R} into \mathbb{R}. Thus $c_{0}(x)=0$ for all $x \in \mathbb{R}$. Since \mathbb{R} is an interval containing 0 , the constant zero-function c_{0} is an element of F. Now we can consider the class $\left[c_{0}\right] \in F / \equiv$ of the zero-function $c_{0} \in F$.

Let $\alpha \in F / \equiv$. Thus $\alpha=[f]$ for some function $f: I \rightarrow \mathbb{R}$. (Here I is an open interval containing 0). Let us compute $\left[c_{0}\right]+[f]$.

It should be clear that $c_{0}+f \equiv f$ because for any $x \in I,\left(c_{0}+f\right)(x)=c_{0}(x)+f(x)=c_{0}+f(x)=$ $f(x)$. Thus $\left[c_{0}\right]+\alpha=\left[c_{0}\right]+[f]=\left[c_{0}+f\right]=[f]$.

Similarly $\alpha+\left[c_{0}\right]=\alpha$.
Therefore $\left[c_{0}\right]$ is the neutral element of F / \equiv for the addition. We may take the element 0 of F / \equiv that we were looking to be equal to $\left[c_{0}\right]$. (Note that this $0 \in F / \equiv$ that we have just defined is not the number $0 \in \mathbb{R}$).

Proof of M1. Let $\alpha, \beta, \gamma \in F / \equiv$. Let $f, g, h \in F$ be such that $\alpha=[f], \beta=[g], \gamma=[h]$. Then $(\alpha \beta) \gamma=([f][g])[h]=[f g][h]=[(f g) h]=[f(g h)]=[f][g h]=[f]([g][h])=\alpha(\beta \gamma)$.

Proof of M2: Let c_{1} denote the constant one-function from \mathbb{R} into \mathbb{R}. Thus $c_{1}(x)=1$ for all $x \in \mathbb{R}$. Since \mathbb{R} is an interval containing 1 , the constant one-function c_{1} is an element of F. Now we can consider the class $\left[c_{1}\right] \in F / \equiv$ of the one-function $c_{1} \in F$.

Let $\alpha \in F / \equiv$. Thus $\alpha=[f]$ for some function $f: I \rightarrow \mathbb{R}$. (Here I is an open interval containing 1). Let us compute $\left[c_{1}\right][f]$.

It should be clear that $c_{1} f \equiv f$ because for any $x \in I,\left(c_{1} f\right)(x)=c_{1}(x) f(x)=1 . f(x)=f(x)$. Thus $\left[c_{1}\right] \alpha=\left[c_{1}\right][f]=\left[c_{1} f\right]=[f]$.

Similarly $\alpha\left[c_{1}\right]=\alpha$.
Therefore $\left[c_{1}\right]$ is the neutral element of F / \equiv for the multiplication. We may take the element 1 of F / \equiv that we were looking to be equal to $\left[c_{1}\right]$. (Note that this $1 \in F / \equiv$ that we have just defined is not the number $1 \in \mathbb{R}$).
4. Find the set of invertible elements of the ring F / \equiv, i.e. find

$$
(F / \equiv)^{*}=\{\alpha \in F / \equiv: \alpha \beta=1 \text { for some } \beta \in F / \equiv\}
$$

(6 pts.)
Solution: Let $\alpha \in(F / \equiv)^{*}$. Let $\beta \in F / \equiv$ be such that $\alpha \beta=1$. Recall that, here, $1=\left[c_{1}\right]$. Let f and g be elements of F for which $\alpha=[f]$ and $\beta=[g]$. Then $\left[c_{1}\right]=1=\alpha \beta=[f][g]=[f g]$ and so $f g \equiv c_{1}$. Therefore there is an open interval I containing 0 such that $(f g)(x)=c_{1}(x)$ for all $x \in$ I. Computing, we find that $f(x) g(x)=1$ for all $x \in I$. In particular f never assumes the 0 value in an open interval of 0 .

Conversely, we will show that if $f \in F$ never assumes the 0 value in an open interval of 0 , then $[f] \in(F / \equiv)^{*}$. Indeed, assume that $f(x) \neq 0$ for all $x \in I$, where I is an open interval
containing 0 . Define $g: I \rightarrow \mathbb{R}$ by the rule $g(x)=1 / f(x)$. Then clearly $(f g)(x)=f(x) g(x)=1=$ $\mathrm{c}_{1}(x)$ for all $x \in I$. It follows that $f g \equiv c_{1}$. Therefore $[f][g]=[f g]=\left[c_{1}\right]=1$ and so $[f] \in(F / \equiv)^{*}$.

We proved that $(F / \equiv)^{*}=\{[f] \in F / \equiv: f$ never assumes the value 0 in an open interval containing 0$\}$.
5. Does the ring F / \equiv have nonzero zerodivisors, i.e. are there nonzero $\alpha, \beta \in F / \equiv$ such that $\alpha \beta=0$? (6 pts.)

Solution: Yes. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $f(x)=x$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ by the rule $g(x)=0$ if $x \neq 0$ and $g(x)=1$ if $x=1$. Then $f g$ is clearly the zero-function c_{0}. Hence $[f][g]=[f g]=\left[c_{0}\right]=$ 0 . But $[f] \neq 0$ and $[g] \neq 0$ because neither f nor g is equal to the zero-function in an open interval of 0 .
6. Does the ring F / \equiv have nonzero nilpotent elements, i.e. is there a nonzero $\alpha \in F / \equiv$ such that $\alpha^{n}=0$ for some positive natural number n ? (6 pts.)

Solution: No. Assume $\alpha \in F / \equiv$ is such that $\alpha^{n}=0$ for some positive natural number n. We will show that $\alpha=0$. Recall that, here, 0 means $\left[c_{0}\right]$. Let $f \in F$ be such that $\alpha=[f]$. Then $\left[c_{0}\right]=0=\alpha^{n}=[f]^{n}=\left[f^{n}\right]$. (Note that, here, f^{n} means $f \ldots f$, the product of f with itself n times, i.e. $\left(f^{n}\right)(x)=f(x)^{n}$ for all x in the domain of $\left.f\right)$. Thus $f^{n} \equiv c_{0}$ and so there is an open interval I containing 0 such that $f^{n}(x)=c_{0}(x)$ for all $x \in I$. Thus $f(x)^{n}=f^{n}(x)=c_{0}(x)=0$ for all $x \in I$. Since $f(x) \in \mathbb{R}$, this implies that $f(x)=0$ for all $x \in I$. Therefore $f \equiv c_{0}$ and so $\alpha=[f]=0$.
7. Show that there is an embedding (one-to-one function) of $(\mathbb{R},+, \times)$ into F that respects the addition and multiplication. (12 pts .)

Proof: For $a \in \mathbb{R}$, let c_{a} denote the constant function that takes only the value a, i.e. the function $c_{a}: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $c_{a}(x)=a$ for all $x \in \mathbb{R}$. Define the function $i: \mathbb{R} \rightarrow F / \equiv$ by the rule $i(a)=\left[c_{a}\right]$ for all $a \in \mathbb{R}$. We need to show that i is one to one and that $i(a+b)=i(a)+$ $i(b)$ and $i(a b)=i(a) i(b)$ for all $a, b \in \mathbb{R}$.

Proof that i is one-to-one. Assume $i(a)=i(b)$. Thus $\left[c_{a}\right]=\left[c_{b}\right]$. This means that there is an interval I containing 0 such that $c_{a}(x)=c_{b}(x)$ for all $x \in I$. Since $0 \in I$, we can apply this last equality to $x=0$ (or to any element x in I), to get $a=c_{a}(x)=c_{b}(x)=b$.

Proof that i is additive. We first check that $c_{a}+c_{b}=c_{a+b}$. Indeed, for any $x \in \mathbb{R}$,

$$
\left(c_{a}+c_{b}\right)(x)=c_{a}(x)+c_{b}(x)=a+b=c_{a+b}(x) .
$$

This proves the equality $c_{a}+c_{b}=c_{a+b}$. Hence,

$$
i(a+b)=\left[c_{a+b}\right]=\left[c_{a}+c_{b}\right]=\left[c_{a}\right]+\left[c_{b}\right]=i(a)+i(b) .
$$

Proof that \boldsymbol{i} is multiplicative. We first check that $c_{a} c_{b}=c_{a b}$. Indeed, for any $x \in \mathbb{R}$,

$$
\left(c_{a} c_{b}\right)(x)=c_{a}(x) c_{b}(x)=a b=c_{a b}(x) .
$$

This proves the equality $c_{a} c_{b}=c_{a b}$. Hence,

$$
i(a b)=\left[c_{a b}\right]=\left[c_{a} c_{b}\right]=\left[c_{a}\right]\left[c_{b}\right]=i(a) i(b) .
$$

8. For $\alpha \in F / \equiv$, define $v_{0}(\alpha)=f(0)$ for some $f \in \alpha$. Show that v_{0} is a well-defined function from F / \equiv onto \mathbb{R}. (12 pts.)

Proof: Suppose $f, g \in \alpha$. Then $f \equiv g$, i.e. there is an open interval I containing 0 such that $f(x)=g(x)$ for all $x \in I$. Since $0 \in I$, in particular, $f(0)=g(0)$. This shows that v_{0} is a welldefined function.

Let us now prove that v_{0} is onto. Indeed if $y \in \mathbb{R}$, then $v_{0}\left(c_{y}\right)=c_{y}(0)=y$.
9. Show that the relation \approx on F / \equiv defined by $\alpha \approx \beta$ if and only if $v_{0}(\alpha)=v_{0}(\beta)$ is an equivalence relation.(14 pts.)

Proof: This is a complete triviality: All follows from the definition

$$
\alpha \approx \beta \text { if and only if } v_{0}(\alpha)=v_{0}(\beta) .
$$

10. Can you put a natural algebraic structure on $(F / \equiv) / \approx$? Can you find its structure? (I.e. does it look like a known algebraic structure?) (16 pts.)

Solution: Yes! $(F / \equiv) / \approx$ looks like \mathbb{R}. Define the function $j:(F / \equiv) / \approx \rightarrow \mathbb{R}$ by the rule,

$$
j([\alpha])=v_{0}(\alpha) .
$$

This function is well-defined because if $[\alpha]=[\beta]$ then $\alpha \approx \beta$ and so $v_{0}(\alpha)=v_{0}(\beta)$ by definition of the relation \approx.

The function is one-to-one because if $j([\alpha])=j([\beta])$, then $v_{0}(\alpha)=v_{0}(\beta)$ and so $\alpha \approx \beta$ and $[\alpha]=[\beta]$.

The function is onto because for any $y \in \mathbb{R}, j(i(y))=v_{0}\left(\left[c_{y}\right]\right)=c_{y}(0)=y$.
Thus there is a "natural" bijection between the set $(F / \equiv) / \approx$ and \mathbb{R}. We can define an "addition" and a "multiplication" to make $(F / \equiv) / \approx$ look more like \mathbb{R}. Indeed, define,

$$
[\alpha]+[\beta]=[\alpha+\beta]
$$

and

$$
[\alpha][\beta]=[\alpha \beta] .
$$

It is easy to check that then j respects the addition and multiplication.

