
 

Math 111 Final Exam 

January 2005 

Ali Nesin 

 

Notes. Yes or no answers will not be accepted. Proofs and disproofs are necessary. 

Please make full sentences, with a subject and a verb, at least. 

Do not use symbols such as ∃, ∀, ⇒, etc. 

Write neetly, clearly, understandably etc. 

 

Let F be the set of functions from some open interval of � containing 0 into �. Note that 

two functions of f may have different domains. For f, g ∈ F, define the relation f ≡ g by the 

condition “there is an open interval I containg 0 such that f(x) = g(x) for all x ∈ I, i.e. if f = g 

on some open interval containing 0”. 

 

1. Show that ≡ is an equivalence relation on F. (The equivalence class [f] of f is called 

the germ of f at 0). (6 pts.) 

Proof: Reflexivity: If f : I → � is a function from an open interval I containing 0 into �, 

then of course f(x) = f(x) for all x ∈ I. Therefore f ≡ f. 

Symmetry: Let f : I → � and g : J → � be two functions. (Here I and J are two open 

intervals both containing 0). Assume f ≡ g. Then f(x) = g(x) for x in some open interval K 

containing 0. (Note that K must be a subinterval of I and J because otherwise f(x) and g(x) are 

not defined). Thus g(x) = f(x) for x ∈ K. Therefore g ≡ f. 

Transitivity: Let f : I → �, g : J → � and h : K → � be three functions in F. (Here I, J 

and K are three open intervals all containing 0). Suppose f ≡ g and g ≡ h. Thus f(x) = g(x) for 

all x in some open interval A containing 0 and g(x) = h(x) for all x in some open interval B 

containing 0. (Here A ⊆ I ∩ J and B ⊆ J ∩ K). Then f(x) = h(x) for all x ∈ A ∩ B. Since A ∩ B 

is an open interval containing 0, this proves that f ≡ g. 

 

2. Show that one is allowed to define addition and multiplication of elements of F/≡ in a 

natural way, namely by the rules 

[f] + [g] = [f + g] and [f][g] = [fg]. 

(10 pts.) 

Proof: Note first that if f : I → � and g : J → �, then as the domain of the functions f + g 

and fg we have to take I ∩ J. Then (f + g)(x) and (fg)(x) can be defined as f(x) + g(x) and 

(fg)(x) = f(x)g(x). 

Suppose [f] = [f1] and [g] = [g1], i.e. suppose f ≡ f1 and g ≡ g1. Thus there are open 

intervals A and B both containing 0 such that f(x) = f1(x) for all x ∈ A and g(x) = g1(x) for all x 

∈ B. Thus 

(f + f1)(x) = f(x) + f1(x) = g(x) + g1(x) = (g + g1)(x) 

and 

(ff1)(x) = f(x)f1(x) = g(x)g1(x) = (gg1)(x) 

for all x ∈ A ∩ B. Since A ∩ B is an open interval containing 0, this proves that f + f1 ≡ g + 

g1 and ff1 ≡ gg1. Thus [f + f1] = [g + g1] and [ff1] ≡ [gg1]. 

 

3. Show that, with the above operations F/≡ is a ring with identity, i.e., (Prove only A2, 

M1 and M2.) 



A1. (α + β) + γ = α + (β + γ) for all α, β, γ ∈ F/≡. 

A2. There is an element 0 ∈ F/≡ such that 0 + α = α + 0 = α for all α ∈ F/≡. 

A3. For all α ∈ F/≡ there is a β ∈ F/≡ such that α + β = β + α = 0. (Here 0 is as in A2). 

A4. α + β = β + α for all α, β ∈ F/≡. 

M1. (αβ)γ = α(βγ) for all α, β, γ ∈ F/≡. 

M2. There is an element 1 ∈ F/≡ such that 1⋅α = α⋅1 = α for all α ∈ F/≡. 

M3. αβ = βα for all α, β ∈ F/≡. 

D. α(β + γ) = αβ + αγ for all α, β, γ ∈ F/≡. 

      (12 pts.) 

Proof of A2: Let c0 denote the constant zero-function from � into �. Thus c0(x) = 0 for 

all x ∈ �. Since � is an interval containing 0, the constant zero-function c0 is an element of F. 

Now we can consider the class [c0] ∈ F/≡ of the zero-function c0 ∈ F. 

Let α ∈ F/≡. Thus α = [f] for some function f : I → �. (Here I is an open interval 

containing 0). Let us compute [c0] + [f]. 

It should be clear that c0 + f ≡ f because for any x ∈ I, (c0 + f)(x) = c0(x) + f(x) = c0 + f(x) = 

f(x). Thus [c0] + α = [c0] + [f] = [c0 + f] = [f]. 

Similarly α + [c0] = α. 

Therefore [c0] is the neutral element of F/≡ for the addition. We may take the element 0 of 

F/≡ that we were looking to be equal to [c0]. (Note that this 0 ∈ F/≡ that we have just defined 

is not the number 0 ∈ �). 

 

Proof of M1. Let α, β, γ ∈ F/≡. Let f, g, h ∈ F be such that α = [f], β = [g], γ = [h]. Then 

(αβ)γ = ([f][g])[h] = [fg][h] = [(fg)h] = [f(gh)] = [f][gh] = [f]([g][h]) = α(βγ). 

 

Proof of M2: Let c1 denote the constant one-function from � into �. Thus c1(x) = 1 for 

all x ∈ �. Since � is an interval containing 1, the constant one-function c1 is an element of F. 

Now we can consider the class [c1] ∈ F/≡ of the one-function c1 ∈ F. 

Let α ∈ F/≡. Thus α = [f] for some function f : I → �. (Here I is an open interval 

containing 1). Let us compute [c1][f]. 

It should be clear that c1f ≡ f because for any x ∈ I, (c1f)(x) = c1(x)f(x) = 1.f(x) = f(x). Thus 

[c1]α = [c1][f] = [c1f] = [f]. 

Similarly α[c1] = α. 

Therefore [c1] is the neutral element of F/≡ for the multiplication. We may take the 

element 1 of F/≡ that we were looking to be equal to [c1]. (Note that this 1 ∈ F/≡ that we have 

just defined is not the number 1 ∈ �). 

 

4. Find the set of invertible elements of the ring F/≡, i.e. find 

(F/≡)* = {α ∈ F/≡ : αβ = 1 for some β ∈ F/≡}. 

(6 pts.) 

Solution: Let α ∈ (F/≡)*. Let β ∈ F/≡ be such that αβ = 1. Recall that, here, 1 = [c1]. Let 

f and g be elements of F for which α = [f] and β = [g]. Then [c1] = 1 = αβ = [f][g] = [fg] and 

so fg ≡ c1. Therefore there is an open interval I containing 0 such that (fg)(x) = c1(x) for all x ∈ 

I. Computing, we find that f(x)g(x) = 1 for all x ∈ I. In particular f never assumes the 0 value 

in an open interval of 0. 

Conversely, we will show that if f ∈ F never assumes the 0 value in an open interval of 0, 

then [f] ∈ (F/≡)*. Indeed, assume that f(x) ≠ 0 for all x ∈ I, where I is an open interval 



containing 0. Define g : I → � by the rule g(x) = 1/f(x). Then clearly (fg)(x) = f(x)g(x) = 1 = 

c1(x) for all x ∈ I. It follows that fg ≡ c1. Therefore [f][g] = [fg] = [c1] = 1 and so [f] ∈ (F/≡)*. 

We proved that (F/≡)* = {[f] ∈ F/≡ : f never assumes the value 0 in an open interval 

containing 0}. 

 

5. Does the ring F/≡ have nonzero zerodivisors, i.e. are there nonzero α, β ∈ F/≡ such 

that αβ = 0? (6 pts.) 

Solution: Yes. Define f : � → � by the rule f(x) = x and g : � → � by the rule g(x) = 0 if 

x ≠ 0 and g(x) = 1 if x = 1. Then fg is clearly the zero-function c0. Hence [f][g] = [fg] = [c0] = 

0. But [f] ≠ 0 and [g] ≠ 0 because neither f nor g is equal to the zero-function in an open 

interval of 0. 

 

6. Does the ring F/≡ have nonzero nilpotent elements, i.e. is there a nonzero α ∈ F/≡ 

such that αn
 = 0 for some positive natural number n? (6 pts.) 

Solution: No. Assume α ∈ F/≡ is such that αn
 = 0 for some positive natural number n. 

We will show that α = 0. Recall that, here, 0 means [c0]. Let f ∈ F be such that α = [f]. Then 

[c0] = 0 = αn 
= [f]

n
 = [f 

n
]. (Note that, here, f

 n
 means f ... f, the product of f with itself n times, 

i.e. (f
 n

)(x) = f(x)
n
 for all x in the domain of f).  Thus f

 n
 ≡ c0 and so there is an open interval I 

containing 0 such that f
 n

(x) = c0(x) for all x ∈ I. Thus f(x)
n
 = f

 n
(x) = c0(x) = 0 for all x ∈ I. 

Since f(x) ∈ �, this implies that f(x) = 0 for all x ∈ I. Therefore f ≡ c0 and so α = [f] = 0. 

 

7. Show that there is an embedding (one-to-one function) of (�, +, ×) into F that respects 

the addition and multiplication. (12 pts.) 

Proof: For a ∈ �, let ca denote the constant function that takes only the value a, i.e. the 

function ca : � → � is defined by ca(x) = a for all x ∈ �. Define the function i : � → F/≡ by 

the rule i(a) = [ca] for all a ∈ �. We need to show that i is one to one and that i(a + b) = i(a) + 

i(b) and i(ab) = i(a)i(b) for all a, b ∈ �. 

Proof that i is one-to-one. Assume i(a) = i(b). Thus [ca] = [cb]. This means that there is 

an interval I containing 0 such that ca(x) = cb(x) for all x ∈ I. Since 0 ∈ I, we can apply this 

last equality to x = 0 (or to any element x in I), to get a = ca(x) = cb(x) = b. 

Proof that i is additive. We first check that ca + cb = ca+b. Indeed, for any x ∈ �,  

(ca + cb)(x) = ca(x) + cb(x) = a + b = ca+b(x). 

This proves the equality ca + cb = ca+b. Hence, 

i(a + b) = [ca+b] = [ca + cb] = [ca] + [cb] = i(a) + i(b). 

Proof that i is multiplicative. We first check that cacb = cab. Indeed, for any x ∈ �,  

(cacb)(x) = ca(x)cb(x) = ab = cab(x). 

This proves the equality cacb = cab. Hence, 

i(ab) = [cab] = [cacb] = [ca][cb] = i(a)i(b). 

 

8. For α ∈ F/≡, define v0(α) = f(0) for some f ∈ α. Show that v0 is a well-defined function 

from F/≡ onto �. (12 pts.) 

Proof: Suppose f, g ∈ α. Then f ≡ g, i.e. there is an open interval I containing 0 such that  

f(x) = g(x) for all x ∈ I. Since 0 ∈ I, in particular, f(0) = g(0). This shows that v0 is a well-

defined function. 

Let us now prove that v0 is onto. Indeed if y ∈ �, then v0(cy) = cy(0) = y. 



 

9. Show that the relation ≈ on F/≡ defined by α ≈ β if and only if v0(α) = v0(β) is an 

equivalence relation.(14 pts.) 

Proof: This is a complete triviality: All follows from the definition 

α ≈ β if and only if v0(α) = v0(β). 

 

10. Can you put a natural algebraic structure on (F/≡)/≈? Can you find its structure? (I.e. 

does it look like a known algebraic structure?) (16 pts.) 

Solution: Yes! (F/≡)/≈ looks like �. Define the function j : (F/≡)/≈ → � by the rule, 

j([α]) = v0(α). 

This function is well-defined because if [α] = [β] then α ≈ β and so v0(α) = v0(β) by 

definition of the relation ≈. 

The function is one-to-one because if j([α]) = j([β]), then v0(α) = v0(β) and so α ≈ β and 

[α] = [β]. 

The function is onto because for any y ∈ �, j(i(y)) = v0([cy]) = cy(0) = y. 

Thus there is a “natural” bijection between the set (F/≡)/≈ and �. We can define an 

“addition” and a “multiplication” to make (F/≡)/≈ look more like �. Indeed, define, 

[α] + [β] = [α + β] 

and  

[α][β] = [αβ]. 

It is easy to check that then j respects the addition and multiplication. 

 


