Math 111 Final Exam January 2005 Ali Nesin

Notes. Yes or no answers will not be accepted. Proofs and disproofs are necessary. Please make full sentences, with a subject and a verb, at least. Do not use symbols such as $\exists, \forall, \Rightarrow$, etc. Write neetly, clearly, understandably etc.

Let *F* be the set of functions from some open interval of \mathbb{R} containing 0 into \mathbb{R} . Note that two functions of *f* may have different domains. For *f*, $g \in F$, define the relation $f \equiv g$ by the condition "there is an open interval *I* containg 0 such that f(x) = g(x) for all $x \in I$, i.e. if f = g on some open interval containing 0".

1. Show that \equiv is an equivalence relation on *F*. (The equivalence class [f] of *f* is called the **germ** of *f* at 0). (6 pts.)

Proof: Reflexivity: If $f: I \to \mathbb{R}$ is a function from an open interval *I* containing 0 into \mathbb{R} , then of course f(x) = f(x) for all $x \in I$. Therefore $f \equiv f$.

Symmetry: Let $f : I \to \mathbb{R}$ and $g : J \to \mathbb{R}$ be two functions. (Here *I* and *J* are two open intervals both containing 0). Assume $f \equiv g$. Then f(x) = g(x) for *x* in some open interval *K* containing 0. (Note that *K* must be a subinterval of *I* and *J* because otherwise f(x) and g(x) are not defined). Thus g(x) = f(x) for $x \in K$. Therefore $g \equiv f$.

Transitivity: Let $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ and $h: K \to \mathbb{R}$ be three functions in *F*. (Here *I*, *J* and *K* are three open intervals all containing 0). Suppose $f \equiv g$ and $g \equiv h$. Thus f(x) = g(x) for all *x* in some open interval *A* containing 0 and g(x) = h(x) for all *x* in some open interval *B* containing 0. (Here $A \subseteq I \cap J$ and $B \subseteq J \cap K$). Then f(x) = h(x) for all $x \in A \cap B$. Since $A \cap B$ is an open interval containing 0, this proves that $f \equiv g$.

2. Show that one is allowed to define addition and multiplication of elements of $F \models in a$ natural way, namely by the rules

$$[f] + [g] = [f + g] and [f][g] = [fg].$$

(10 pts.)

Proof: Note first that if $f: I \to \mathbb{R}$ and $g: J \to \mathbb{R}$, then as the domain of the functions f + g and fg we have to take $I \cap J$. Then (f + g)(x) and (fg)(x) can be defined as f(x) + g(x) and (fg)(x) = f(x)g(x).

Suppose $[f] = [f_1]$ and $[g] = [g_1]$, i.e. suppose $f \equiv f_1$ and $g \equiv g_1$. Thus there are open intervals *A* and *B* both containing 0 such that $f(x) = f_1(x)$ for all $x \in A$ and $g(x) = g_1(x)$ for all $x \in B$. Thus

and

 $(f+f_1)(x) = f(x) + f_1(x) = g(x) + g_1(x) = (g+g_1)(x)$

 $(ff_1)(x) = f(x)f_1(x) = g(x)g_1(x) = (gg_1)(x)$

for all $x \in A \cap B$. Since $A \cap B$ is an open interval containing 0, this proves that $f + f_1 \equiv g + g_1$ and $ff_1 \equiv gg_1$. Thus $[f + f_1] = [g + g_1]$ and $[ff_1] \equiv [gg_1]$.

3. Show that, with the above operations $F \equiv is$ a ring with identity, i.e., (Prove only A2, M1 and M2.)

A1. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$ for all $\alpha, \beta, \gamma \in F/\equiv$. A2. There is an element $0 \in F/\equiv$ such that $0 + \alpha = \alpha + 0 = \alpha$ for all $\alpha \in F/\equiv$. A3. For all $\alpha \in F/\equiv$ there is a $\beta \in F/\equiv$ such that $\alpha + \beta = \beta + \alpha = 0$. (Here 0 is as in A2). A4. $\alpha + \beta = \beta + \alpha$ for all $\alpha, \beta \in F/\equiv$. M1. $(\alpha\beta)\gamma = \alpha(\beta\gamma)$ for all $\alpha, \beta, \gamma \in F/\equiv$. M2. There is an element $1 \in F/\equiv$ such that $1 \cdot \alpha = \alpha \cdot 1 = \alpha$ for all $\alpha \in F/\equiv$. M3. $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in F/\equiv$. D. $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ for all $\alpha, \beta, \gamma \in F/\equiv$. (12 pts.)

Proof of A2: Let c_0 denote the constant zero-function from \mathbb{R} into \mathbb{R} . Thus $c_0(x) = 0$ for all $x \in \mathbb{R}$. Since \mathbb{R} is an interval containing 0, the constant zero-function c_0 is an element of *F*. Now we can consider the class $[c_0] \in F/=$ of the zero-function $c_0 \in F$.

Let $\alpha \in F/\equiv$. Thus $\alpha = [f]$ for some function $f : I \to \mathbb{R}$. (Here *I* is an open interval containing 0). Let us compute $[c_0] + [f]$.

It should be clear that $c_0 + f \equiv f$ because for any $x \in I$, $(c_0 + f)(x) = c_0(x) + f(x) = c_0 + f(x) = f(x)$. Thus $[c_0] + \alpha = [c_0] + [f] = [c_0 + f] = [f]$.

Similarly $\alpha + [c_0] = \alpha$.

Therefore $[c_0]$ is the neutral element of $F \models$ for the addition. We may take the element 0 of $F \models$ that we were looking to be equal to $[c_0]$. (Note that this $0 \in F \models$ that we have just defined is not the number $0 \in \mathbb{R}$).

Proof of M1. Let α , β , $\gamma \in F \neq I$. Let *f*, *g*, $h \in F$ be such that $\alpha = [f]$, $\beta = [g]$, $\gamma = [h]$. Then $(\alpha\beta)\gamma = ([f][g])[h] = [fg][h] = [(fg)h] = [f(gh)] = [f][gh] = [f]([g][h]) = \alpha(\beta\gamma)$.

Proof of M2: Let c_1 denote the constant one-function from \mathbb{R} into \mathbb{R} . Thus $c_1(x) = 1$ for all $x \in \mathbb{R}$. Since \mathbb{R} is an interval containing 1, the constant one-function c_1 is an element of F. Now we can consider the class $[c_1] \in F/=$ of the one-function $c_1 \in F$.

Let $\alpha \in F/\equiv$. Thus $\alpha = [f]$ for some function $f : I \to \mathbb{R}$. (Here *I* is an open interval containing 1). Let us compute $[c_1][f]$.

It should be clear that $c_1 f \equiv f$ because for any $x \in I$, $(c_1 f)(x) = c_1(x)f(x) = 1$, f(x) = f(x). Thus $[c_1]\alpha = [c_1][f] = [c_1 f] = [f]$.

Similarly $\alpha[c_1] = \alpha$.

Therefore $[c_1]$ is the neutral element of $F \models$ for the multiplication. We may take the element 1 of $F \models$ that we were looking to be equal to $[c_1]$. (Note that this $1 \in F \models$ that we have just defined is not the number $1 \in \mathbb{R}$).

4. Find the set of invertible elements of the ring
$$F \models$$
, i.e. find
 $(F \models)^* = \{ \alpha \in F \models : \alpha\beta = 1 \text{ for some } \beta \in F \models \}.$

(6 pts.)

Solution: Let $\alpha \in (F/\equiv)^*$. Let $\beta \in F/\equiv$ be such that $\alpha\beta = 1$. Recall that, here, $1 = [c_1]$. Let *f* and *g* be elements of *F* for which $\alpha = [f]$ and $\beta = [g]$. Then $[c_1] = 1 = \alpha\beta = [f][g] = [fg]$ and so $fg \equiv c_1$. Therefore there is an open interval *I* containing 0 such that $(fg)(x) = c_1(x)$ for all $x \in I$. Computing, we find that f(x)g(x) = 1 for all $x \in I$. In particular *f* never assumes the 0 value in an open interval of 0.

Conversely, we will show that if $f \in F$ never assumes the 0 value in an open interval of 0, then $[f] \in (F/\equiv)^*$. Indeed, assume that $f(x) \neq 0$ for all $x \in I$, where *I* is an open interval

containing 0. Define $g: I \to \mathbb{R}$ by the rule g(x) = 1/f(x). Then clearly $(fg)(x) = f(x)g(x) = 1 = c_1(x)$ for all $x \in I$. It follows that $fg \equiv c_1$. Therefore $[f][g] = [fg] = [c_1] = 1$ and so $[f] \in (F/\equiv)^*$.

We proved that $(F \models)^* = \{ [f] \in F \models : f \text{ never assumes the value } 0 \text{ in an open interval containing } 0 \}.$

5. Does the ring $F \models$ have nonzero zerodivisors, i.e. are there nonzero α , $\beta \in F \models$ such that $\alpha\beta = 0$? (6 pts.)

Solution: Yes. Define $f : \mathbb{R} \to \mathbb{R}$ by the rule f(x) = x and $g : \mathbb{R} \to \mathbb{R}$ by the rule g(x) = 0 if $x \neq 0$ and g(x) = 1 if x = 1. Then fg is clearly the zero-function c_0 . Hence $[f][g] = [fg] = [c_0] = 0$. But $[f] \neq 0$ and $[g] \neq 0$ because neither f nor g is equal to the zero-function in an open interval of 0.

6. Does the ring $F \equiv$ have nonzero nilpotent elements, i.e. is there a nonzero $\alpha \in F \equiv$ such that $\alpha^n = 0$ for some positive natural number *n*? (6 pts.)

Solution: No. Assume $\alpha \in F/\equiv$ is such that $\alpha^n = 0$ for some positive natural number *n*. We will show that $\alpha = 0$. Recall that, here, 0 means $[c_0]$. Let $f \in F$ be such that $\alpha = [f]$. Then $[c_0] = 0 = \alpha^n = [f]^n = [f^n]$. (Note that, here, f^n means $f \dots f$, the product of *f* with itself *n* times, i.e. $(f^n)(x) = f(x)^n$ for all *x* in the domain of *f*). Thus $f^n \equiv c_0$ and so there is an open interval *I* containing 0 such that $f^n(x) = c_0(x)$ for all $x \in I$. Thus $f(x)^n = f^n(x) = c_0(x) = 0$ for all $x \in I$. Since $f(x) \in \mathbb{R}$, this implies that f(x) = 0 for all $x \in I$. Therefore $f \equiv c_0$ and so $\alpha = [f] = 0$.

7. Show that there is an embedding (one-to-one function) of $(\mathbb{R}, +, \times)$ into *F* that respects the addition and multiplication. (12 pts.)

Proof: For $a \in \mathbb{R}$, let c_a denote the constant function that takes only the value a, i.e. the function $c_a : \mathbb{R} \to \mathbb{R}$ is defined by $c_a(x) = a$ for all $x \in \mathbb{R}$. Define the function $i : \mathbb{R} \to F/\equiv$ by the rule $i(a) = [c_a]$ for all $a \in \mathbb{R}$. We need to show that i is one to one and that i(a + b) = i(a) + i(b) and i(ab) = i(a)i(b) for all $a, b \in \mathbb{R}$.

Proof that *i* is one-to-one. Assume i(a) = i(b). Thus $[c_a] = [c_b]$. This means that there is an interval *I* containing 0 such that $c_a(x) = c_b(x)$ for all $x \in I$. Since $0 \in I$, we can apply this last equality to x = 0 (or to any element x in *I*), to get $a = c_a(x) = c_b(x) = b$.

Proof that *i* is additive. We first check that $c_a + c_b = c_{a+b}$. Indeed, for any $x \in \mathbb{R}$,

 $(c_a + c_b)(x) = c_a(x) + c_b(x) = a + b = c_{a+b}(x).$

This proves the equality $c_a + c_b = c_{a+b}$. Hence,

$$i(a + b) = [c_{a+b}] = [c_a + c_b] = [c_a] + [c_b] = i(a) + i(b).$$

Proof that *i* is multiplicative. We first check that $c_a c_b = c_{ab}$. Indeed, for any $x \in \mathbb{R}$,

 $(c_a c_b)(x) = c_a(x)c_b(x) = ab = c_{ab}(x).$

This proves the equality $c_a c_b = c_{ab}$. Hence,

 $i(ab) = [c_{ab}] = [c_ac_b] = [c_a][c_b] = i(a)i(b).$

8. For $\alpha \in F/\equiv$, define $v_0(\alpha) = f(0)$ for some $f \in \alpha$. Show that v_0 is a well-defined function from F/\equiv onto \mathbb{R} . (12 pts.)

Proof: Suppose $f, g \in \alpha$. Then $f \equiv g$, i.e. there is an open interval I containing 0 such that f(x) = g(x) for all $x \in I$. Since $0 \in I$, in particular, f(0) = g(0). This shows that v_0 is a well-defined function.

Let us now prove that v_0 is onto. Indeed if $y \in \mathbb{R}$, then $v_0(c_y) = c_y(0) = y$.

9. Show that the relation \approx on $F \models$ defined by $\alpha \approx \beta$ if and only if $v_0(\alpha) = v_0(\beta)$ is an equivalence relation.(14 pts.)

Proof: This is a complete triviality: All follows from the definition $\alpha \approx \beta$ if and only if $v_0(\alpha) = v_0(\beta)$.

10. Can you put a natural algebraic structure on $(F/\equiv)/\approx$? Can you find its structure? (I.e. does it look like a known algebraic structure?) (16 pts.)

Solution: Yes! $(F/\equiv)/\approx$ looks like \mathbb{R} . Define the function $j: (F/\equiv)/\approx \to \mathbb{R}$ by the rule,

 $j([\alpha]) = v_0(\alpha).$

This function is well-defined because if $[\alpha] = [\beta]$ then $\alpha \approx \beta$ and so $v_0(\alpha) = v_0(\beta)$ by definition of the relation \approx .

The function is one-to-one because if $j([\alpha]) = j([\beta])$, then $v_0(\alpha) = v_0(\beta)$ and so $\alpha \approx \beta$ and $[\alpha] = [\beta]$.

The function is onto because for any $y \in \mathbb{R}$, $j(i(y)) = v_0([c_y]) = c_y(0) = y$.

Thus there is a "natural" bijection between the set $(F/\equiv)/\approx$ and \mathbb{R} . We can define an

"addition" and a "multiplication" to make $(F \models) \approx \text{look}$ more like \mathbb{R} . Indeed, define,

$$[\alpha] + [\beta] = [\alpha + \beta]$$

and

$$[\alpha][\beta] = [\alpha\beta]$$

It is easy to check that then *j* respects the addition and multiplication.